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1.1 Introduction

Supervised learning, one of the most important areas of machine learning, is the
general problem of learning a function that predicts the best value for a response
variable y for an observation z by making use of a sample of input-output pairs.
Traditionally, in classification, the values that y can take are simple, in the sense that
they can be characterized by an arbitrary identifier. However, in many real-world
applications the outputs are often complex, in that either there are dependencies
between classes (eg. taxonomies used for example in document classification), or
the classes are objects that have some internal structure such that they describe
a configuration over inter-dependent components (eg. sequences, parse trees). For
such problems, which are commonly called structured output prediction problems,
standard multiclass approaches render ineffective, since the size of the output space
is very large (eg. the set of label sequences scale exponentially with the length of the
input sequence). More importantly, it is crucial to capture the common properties
that are shared by the set of classes in order to generalize across classes as well as
to generalize across input patterns.

In this paper, we approach the structured output prediction problems by gener-
alizing a multiclass Support Vector Machine formulation by Crammer and Singer
(2001) to the broad problem of learning for interdependent and structured outputs.
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To that extent, we specify discriminant functions that exploit the dependencies and
structure of outputs. This framework enables generalization across classes and pre-
diction of classes that may not have been observed in the training set. We provide
the details of this framework for three important special cases, namely hierarchical
classification, label sequence learning and weighted context-free grammar learning.

The standard 0-1 cost function is not adequate to capture the differences between
classes in interdependent and structured output spaces. More sophisticated cost
functions such as Hamming loss and F} score are common in practice, for example
for sequence and parse trees. We generalize the separation margin notion for
structured outputs and device max-margin formulations that directly incorporate
the cost functions that the classifier is evaluated on. These formulations result
in a potentially prohibitive, more specifically exponential, number of constraints.
However, exploiting the sparsity and the (de-)coupling of these constraints, we
present a cutting-plane algorithm that is guaranteed to satisfy the exponential
number of constraints upto an e-precision without evaluating them explicitly.

We empirically evaluate our approach in document classification as an instance of
hierarchical classification, named entity recognition as an instance of label-sequence
learning and natural language parsing as an instance of learning weighted context-
free grammars. Experimental results show that our framework is advantageous over
the more standard approaches in terms of the cost function on which the classifiers
are evaluated.

1.2 A Framework for Structured/Interdependent Output Learning
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We are interested in the task of inferring a complex label y € Y for a (possi-
bly structured) observation x € X. Given a sample of input-output pairs S =
{(x1,¥1),- -, (Xn,yn)} generated from an unknown distribution P, the goal is to
learn a mapping f : X — Y between input spaces X and interdependent/structured
output spaces Y. Hence, it is a generalization of the supervised classification prob-
lem where values of the random variables are predicted not only with respect to
observations but also with respect to the values of other related random variables.

The prediction function f is evaluated according to a cost function A : YxY — R,
which measures the similarity between two labels. We focus on cost functions where
Ay,y) =0 and A(y,y’) > 0,y # y'. For example, 0-1 loss, Hamming loss and
1—F loss are the canonical cost functions of multiclass classification, label sequence
learning and parsing respectively. The goal of learning a function that minimizes
the cost over the unknown P is commonly approximated by learning a function
that minimizes the empirical cost

RE(F) = D0 Ay Fx0). (1)
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In general, minimizing this cost on the sample is NP complete. Following the usually
practice in machine learning, we investigate optimizing surrogate functions of the
empirical cost.

In structured and interdependent output prediction, two factors make it essential
to generalize across sets of labels as well as to generalize across input patterns.
First, in most cases, the very large size of the label sets renders any learning that
is independent over class labels intractable. More importantly, capturing common
properties shared by sets of labels enable us to use data points across classes, and
even generalize to class labels that are not observed in the sample but likely to occur
as the label of a new observation. Therefore, the standard approach of multiclass
classification, i.e. learning a function F, : X — R for each class independently and
inferring the label of an observation by maximizing F,(x) over all labels, is not
appropriate for this setting. We define a discriminant function F : X x Y — R over
the joint input-output space where F(x,y) can be interpreted as measuring the
compatibility of x and y. Each such function F' induces a mapping f,

f(x) = argmax F(x,y; w), (1.2)
yeY

where w denotes a parameter vector and ties are broken arbitrarily. We restrict the
space of F' to linear functions over some feature representation ¥, which is defined
on the joint input-output space

F(xy;w) = (w, ¥(x,y)).

¥ is chosen with respect to the dependency structure of y and x and commonalities
within y’s in order to enable generalization across labels. Before we present several
interesting special cases, we need some definitions. We define the canonical (binary)
representation of outputs y € Y = {1,...,k} by unit vectors

A(y) = (8(y,1),6(y,2),...,0(y, k) € {0,1}*.

so that (A°(y),A°(y’)) = 6(y,y’). Let the tensor product ® and the concatenation
©® be defined as

X Z§Rd X §Rk — %dk, [a® b]iJr(j,l)d = [a]i[b]j,
©RExRF - RITE aob=(a,b).
The following proposition states that feature representations derived from ® and

® operations, such as all the joint feature maps ¥ defined in this chapter, are
induced by valid kernels.
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Proposition 1 Let ® and ® be feature representations induced by kernels k, k
over X x X, X x X respectively (i. e. k(a,a) = (®(a),®(a))). Then, for any
a,a€ X,b,bc X, ®®® and ® © ® are induced by kernels kg, ke where

ke((a,b), (a,b))
k@((av b)7 (a’ 6))

Proof The claims follow from the definitions of ©® and ® operations and from the
fact that sums and pointwise products of two kernels are also kernels (Schélkopf and
Smola, 2002). |

k(a,a)k(b,b), (1.3)
k(a,a) + k(b,b). (1.4)

For the rest of this section, we assume the existence of an arbitrary feature
representation of the inputs, ®(x) € R, and a kernel function k that induces
.

It is easy to see that multi-class classification is a special case of our framework
where Y = {1,..., k}. Let the weight vector w be a concatenation of all w, with w,
being a weight vector associated with the r-th class, w = w1 ® - -+ ® wy. Defining
the joint feature map is given by ¥(x,y) = ®(x) ® A°(y), results in the familiar
multiclass discriminant function F(x,y; w) = (wy, ®(x)).

Let us now examine more interesting special cases.

1.2.1 Hierarchical Classification

In many applications, such as document classification and word sense disambigua-
tion, taxonomies and hierarchies are natural ways to organize classes of objects.
These problems are instances of interdependent output spaces where the feature
representation is defined as follows: Let a taxonomy be a set of elements Z 2O Y
equipped with a partial order <, which can be by a tree or a lattice, and let
B(y,-) € R be a measure of similarity with respect to the partial order <. We
generalize the canonical representation of outputs to A(y) € P, such that for all
z€Z

A(y) = B,z fy<zory=z2
= 0 otherwise

Then, defining the joint input-output feature map via the tensor product,
U(x,y) = (x) @ Ay).

effectively introduces a weight vector w, for all z € Z, i.e. for every node in the
hierarchy. A simple derivation shows that the weight vector of a class is a linear
combination of its processors’ weights and the discriminant is given by

Fxysw)= Y. By,2) (W, ®(x)).

z:y<z or z=y
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(w, ¥(x,2)) = (w2, x ;X ;X

=)
(=)
=)
[}

U(x,2)

O OO, O OO
O OO ©OOONK

Figure 1.1 Class1ﬁcat10n with taxonomies.

Thus, the features A\, are shared by all successor classes of z and the joint feature
representation enables generalization across classes. Figure 1.1 shows an example
of the joint feature map ¥ of the second class for a given hierarchy.

It follows immediately from (1.3) of Proposition 1 that the inner product of the
joint feature map decomposes into kernels over input and output spaces

(W(x,9), (") = (Ay), AY)) k(x,x).
1.2.2 Label Sequence Learning

Label sequence learning is the task of predicting a sequence of labels y = (y*,...,4")
for a given observation sequence x = (x!,...,x'). Applications of this problem are
ubiquitous in many domains such as computational biology, information retrieval,
natural language processing and speech recognition. We denote by [« the length of
an observation sequence, by 3 the set of possible labels for each individual variable
yt, and by Y(x) the set of label sequences for x. Then, Y(x) = Xl*,

In order to encode the dependencies of the observation-label sequences which
are commonly realized as a Markov chain, we define ¥ to include interactions
between input features and labels (®(x') ® A°(y?)), as well as interactions between
neighboring label variables (A¢(y?) @ A¢(y**1)) for every position t. Then, using the
stationary property, our joint feature map is a sum over all positions

Ix—1

ZAC ®Ac t+1) , (15)

Ix

Y d(x) @ A(y!

t=1

\II(Xv Y) =

where 1 > 0 is a scalar balancing the two types of contributions. Clearly, this repre-
sentation can be generalized by including higher order inter-dependencies of labels
(e. g. A¢(yh) @ A°(y* 1) @ A¢(yt+?)), by including input features from a window cen-
tered at the current position (e. g. replacing ®(x!) with ®(x!=", ... xt, ... x!*t"))
or by combining higher order output features with input features (e. g. Y, ®(x") ®
A¢(yt) ® A¢(y*t1)). The important constraint on designing the feature map is the

2006/08/03 14:15



2006/08/03 14:15

SVM Learning for Interdependent and Structured Output Spaces
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Figure 1.2 Natural language parsing.

efficient computation of the discriminant function, which in the case of (1.5) is given
by

le—1
Flx,y;w) = <W01’Z¢) ) ® A(y >+77<Wzl721\” )@ A°( f+1)>7
(1.6)

where w = w,; © wy; is the concatenation of weights of the two dependency types.
As indicated in Proposition 1, the inner product of the joint feature map decom-
poses into kernels over input and output spaces

Iy lx’ Iy —1l r—1

(e y), Uy =3 > 8, RREID DD BRI A
t=1 s=1 t=1 s=1

(1.7)

where we used the equality (A¢(c), A°(a)) = §(0,0).
1.2.3 Weighted Context-Free Grammars

Parsing is the task of predicting a labeled tree y that is a particular configuration
of grammar rules generating a given sequence x = (z!,...,2!). Let us consider a
context-free grammar in Chomsky Normal Form. The rules of this grammar are of
the form o — ¢’c”, or 0 — x, where o,0’, 0" € ¥ are non-terminals, and x € T are
terminals. Similar to the sequence case, we define the joint feature map ¥(z,y) to
contain features representing inter-dependencies between labels of the nodes of the
tree (€.g. Yo—oror via AS(y™) @ A°(y") @ A°(y(*T1D#)) and features representing
the dependence of labels to observations (e.g. ¥y, via ®°(z') ® A(y?)). Here y"*
denotes the label of the root of a subtree spanning from z" to x°. This definition
leads to equations similar to (1.5), (1.6) and (1.7). Extensions to this representation
is possible, for example by defining higher order features that can be induced using
kernel functions over sub-trees (Collins and Dufty, 2002).
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1.3 A Maximum Margin Formulation

We propose a maximum margin approach for the problem of learning in structured
and interdependent output spaces. We first generalize the multiclass separation
margin of (Crammer and Singer, 2001), where the margin of an instance (x,y)
with respect to w is given by

v(x,y;w) = F(x,y;w) — max F(x,y’;w).
y'€Y\y
Then, the maximum margin problem can be defined as finding the weight vector
w that maximizes the minimum margin of the sample, min; y(x?,y*). If the data is
separable (v > 0), there exists multiple solutions to this problem, since the margin
can be made arbitrarily large by scaling w. This can be resolved by fixing either
the norm of w (eg.||w|| = 1) or the margin (eg. min; y(x%, y*) > 1). Following the
latter, we have a constraint optimization problem

1
SVMj : min §||w||2

st. F(x;,yi;;w) — max F(x;,y;w)>1, Vi
yEY\y:

In order to accommodate for margin violations, we generalize this formulation
by introducing linear penalties that are scaled according to the cost incurred by
misclassification. Intuitively, violating a margin constraint involving a y # y; with
high loss A(y;,y) should be penalized more severely than a violation involving an
output value with smaller loss. This can be accomplished by multiplying the margin
violation, given by (1 — (w,d¥;(y))) where dU;(y) = ¥(x;,y:) — U(xi,¥)), by the
cost

. ' C n
SVMlA‘ : Ig}? % (w,w) + o ;E & (1.9a)
s.t. max [A(y:,y)(1—(w,0%;(y))]>1-& Vi (1.9b)

yeY\y:

Here C' > 0 is a constant controlling the trade of between the loss and the
regularizer. Note that S\/'MlAS can also be stated without constraints via a hinge
loss function

SVM&* min | |w||2 Zmax Ay, y)(1 = (w,6%;(y)))4], (1.10)

where (a); = max(0, a) denotes the hinge loss. It is easy to show that SVM2is a
surrogate of the empirical cost (1.1).

Proposition 2 Let w* be the optimal solution to SVMlAS . Then, the empirical Tisk
fRSA(W*) is upper bounded by L 3" maxy i [Ayi, y)(1 — (W*, 6%;(y)))+].
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Proof If f(xs;w*) = y; then A(ys, f(x;;w)) = 0 and the bound holds trivially.
15 = flxiw®) # yir then masypy: (A y)(1— (v, 8%i(0)] = Alyiy):
because (w*,0¥,;(y)) < 0. Since the bound holds for every training instance, it also
holds for the average. [

A similar optimization problem can be given by the squared hinge loss, or equiva-
lently by the squared penalties on the slack variable This loss, which we denote by
SVMZAS , is also an upper bound on the empirical cost 32? (w).

1.3.1 Optimizing the primal problem

By specifying the class of discriminant functions F' to be the Reproducing Kernel
Hilbert Space (RKHS) associated with the kernel k, where k((x,y),(X,¥y)) =
(¥(x,y), U(X,y)), it is easy to show that S\/'MlAS (1.10) is an instance of a more
general optimization problem given by

F* = argmin Zﬁ(aﬁi, y', F) + M| F|,
Fex

where L is a convex loss function. The well-known Representer Theorem(Kimeldorf
and Wahba, 1971) states that the solution F™* lies in the span of data points, in
this case (x;,y) for all x; € S and y € Y(x). Under fairly mild conditions, one can
show that this space can be further reduced to the span of the substructures of the
data points, via a straightforward variant of the Representer Theorem which was
also presented in (Lafferty et al., 2004; Altun et al., 2005). Let C(x,y) be the set of
assignments of all subcomponents of (x,y). For example, if (x,y) corresponds to a
Markov Random Field, C(x,y) is given by the clique assignments. Furthermore, let
C(S) = Uxes,yeyx)C(x,y). If the discriminant F'(x,y) decomposes into a function
h defined over the subcomponents of (x,y) and the loss L is local in the sense that
L(x,y, F) is determined by the values of h over the set C(x), F* can be represented
over C(9).

Theorem 3 For any local loss function L and any sample S, there exist some
weights ae, Ve € C(S) such that F* admits a representation of the form

Fr(x,y;0) = Y h'(ga),

ceC(x,y)

h*(c;a) = Z ack(e,c).

' €C(S)

where the kernel function k is defined so that h(c) = <h, k(c, )>

Note that since all joint feature maps ¥(x,y) considered in Section 1.2 decom-
pose into subcomponents of (x,y), the corresponding F' and the margin losses,
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SVM%* and SVM5™* |, satisfy the conditions in Theorem 3. Then, we can reformal-
ize SVM{™® as an optimization problem over o

angi(r(l})% Z acauk(c,c) va

c,c’eC(S)
st max [Alys, )+ F(x5,y;0) = F(xi,yi50)] 2 1= &) Vie  (L11)
YEI\Yi
This gives a convex program over the vectors indexed by C(S), which scales
polynomially in terms of the size of the output variables. Every one of the nonlinear

inequalities (1.11) implicitly represent exponentially many linear constraints given
by

Vi,Vy € Y\yi: Alys,y)(1+ F(xi,y;a) — F(xi,yi;a) > 1= &(a).  (1.12)

If one can perform the max operation in (1.11) via a polynomial time dynamic
programming (DP) algorithm, then there exists a polynomial number of constraints
that satisfy (1.12). Each such constraint involve a cost variable C', which are coupled
within instances x; and are upper bounded by &;. The resulting optimization
problem, which is closely related to the factored primal of Taskar et al. (2003),
is a polynomial sized QP with polynomial number of highly coupled constraints.
Unfortunately, this coupling prohibits the use of decomposition methods such as
Sequential Minimal Optimization (Platt, 1998) and may render the optimization
intractable for large dataset. In the next section, we present a method for optimizing
the dual problem which benefits the decomposition methods.

1.3.2 Dual problem

Using the standard Lagrangian techniques, i .e .introducing a Lagrange parameter
(i) enforcing the margin constraint for label y # y; and input x;, writing out the
Lagrangian, differentiating it with respect to the primal parameters w and &, and
substituting the optimality equations of the primals into the Lagrangian results, in
a dual quadratic program (QP). Let j((xi,¥), (x;,¥)) = (0¥;(y),6¥;(¥)) denote
the kernel function 1. Then, the QP of SVMlAS and SVM2 is given in the following
proposition.

Proposition 4 The dual problem to SVM and SVM is given by the program

—argmax——z Y. neuwi(xy), (x.9) + D0 D aay), (1.13)

L] YEYYEY T YAy
s.t.a>0,

1. Note that j can be computed from the inner products involving values of ¥ due to the
linearity of the inner product, and is a valid kernel.
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where S VMlAS has additional box constraints

Z%Sg, VZ:L,TL
Ay, Wby
and SVMQAS has a modified kernel function

ndij

CV/Ayi,y)V/Aly;. ¥)

3((xi,¥), (x5, ¥)) = (0Wi(y), 69;(y)) + (1.14)

The optimality equation of w is given by

W= Y al,005(y) (1.15)

J

1.4 Cutting Plane Algorithm

2006/08/03 14:15

The main computational challenge in optimizing (1.13) is posed by the extremely
large number of variables (n|Y| —n). If Y is a product space, its cardinality grows
exponential in the size of y (for instance in sequences of length [, |Y| = ||!),
rendering the optimization of (1.13) by standard quadratic programming solvers
intractable. The max-margin problem in structured-output prediction has two
properties that can be exploited for efficient optimization. First, we expect only a
very small fraction of the constraints (and therefore a small number of parameters)
to be active, due to the hinge loss but more importantly due to the overlap of
information among classes represented via the joint feature map. The analysis of
sparsity is presented in Section 1.4.2. Secondly, the constraint matrix is (at least)
block diagonal (diagonal for the SVMQAS variant), resulting in dual variables to be
coupled only within a block of variables associated with the same training instance.
We propose a general cutting plane algorithm (Kelley, 1960) for cost-sensitive
support vector machines. This algorithm exploits the above mentioned properties
of the maximum-margin problem, so that only a small number of constraints are
examined explicitly and a small size QP is solved at each iteration of the algorithm.
In a nutshell, the algorithm starts with no constraints (which corresponds to the
most relaxed version of the primal) and iterative adds constraints via a variable
selection approach in the dual formulation leading to tighter relaxations.
Pseudo-code of the algorithm is depicted in Algorithm 1.1. The algorithm main-
tains working sets .S; for each instance to keep track of the selected constraints which
define the current relaxation. Iterating through the training examples (x;,y;), the
algorithm finds the (potentially) “most violated” constraint of x;, involving some
output value y. If the scaled margin violation of this constraint exceeds the current
value of & by more than €, the dual variable corresponding to y is added to the
working set, leading to the cut-off of the current primal solution from the feasible
set (see Figure 1.3). Once a constraint has been added, the quadratic program is
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Algorithm 1.1 Cost-sensitive support vector machines (SVMlAS and SVMQAS ).

1: input: (X1,¥1),.-.5 (Xn,¥n), C, €
2: output:
3 S;«—0Pforalli=1,...,n
4: repeat
5: fori=1,...,ndo
o a2 {0 RO W) AELy) VM)
(1 - (0Wi(y), W) VAlyey)  (SVMEY)
where w = 37 Ey’esj ay0P;(y").
7 compute y = arg maxycy H(y)
8: compute §; = max{0, maxycs, H(y)}
9: if H(y) > & + € then
10: S — S; U {y}
10a: /* Variant (a): perform full optimization */
as < optimize the dual of SVMfs or SVM2AS over S, S =U;S;
10b: /* Variant (b): perform subspace ascent */
as; — optimize the dual of SVMS* or SVM3* over S;
13: end if
14: end for

15: until no S; has changed during iteration

solved with respect to S or S; (leading to smaller QP problems) depending on the
ratio of the complexity of the constraint selection in step 7 and the complexity of
solving the relaxed QP. Since at each iteration only one constraint is added, it is
possible to initialize the QP solver to the current solution, which greatly reduces the
runtime. If y satisfies the soft-margin constraint up to € precision, it implies that the
rest of constraints are approximately satisfied as well and no further improvement
is necessary for x;.

Due to the generality of the algorithm, by implementing the feature mapping
U(x,y) (either explicit or via a joint kernel function), the cost function A(y,y’)
and the maximization in step 7 accordingly one achieves a max-margin classifier
for all the special cases considered in Section 1.2 as well as others such as string-
to-string matching.

1.4.1 Finding most violated constraint

We now describe efficient algorithms to compute the maximization in step 7 of
Algorithm 1.1. Note that the crucial computation involves finding

argmax Ay, y")F(x:,y), (1.16)

Y#Yi
since the other terms computed by simple operations. There exists well-known
DP algorithms for finding argmax,, F(x,y) for various dependency structures, such
as the Viterbi algorithm for sequences and CKY algorithm for parsing (Manning
and Schuetze, 1999). When A is 0/1 loss, (1.16) can be found by modifying these
algorithms to find the n-best labeling of an observation, for n = 2 (Schwarz and

2006/08/03 14:15
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a) b) c)

Figure 1.3 Cutting plane algorithm. Successive steps of the cutting plane algorithm. In
first step no constraints have been added (no shading), w® = 0 is the current solution. (a)
Second step: The (potentially) most violated constraint has been added. It cuts off the
current solution w® from the feasible region (shaded).(b) Third step: One more violated
constraint is added, and the new solution is computed. (¢) Fourth step: The process is
repeated until there are no more violating constraints.

Chow, 1990). In cases where A(y;,-) only takes on a finite number of values, a
generic strategy is a two stage approach, where one first computes the maximum
over those y for which the cost A(y;,y) is constant, and then maximizes over
the finite number of levels. However, this strategy can scale the computational
complexity by the size of y (e. g. when the cost is the Hamming loss). We now
present the recursion rules of a simple modification of the DP algorithms to compute
(1.16) for Hamming loss and 1 — F} score. The resulting algorithms are as efficient
as the original DP algorithm (up to a small constant). This approach can easily be
generalized to any cost function that decomposes into factors that are linear in the
cost of subcomponents of y.

Note that Hamming loss is given by A(y,y) = Z?:l 5(yt, '), where y' denotes
the " component of y (e. g. t'* position in a sequence of length T') and d(a, b) is
0 is @ = b and 1 otherwise. Let ¢(t,0,0’; w) be the local contribution of assigning
o to the t*" component with respect to w given the previous variable assignments
o' . Suppressing the dependence on y’ and w, the recursive rules are given by

= argmax (T;-1(0”) + 0(y;, 0) Fi-1(0") + c(t, 0, 0") [Di-1(0") + 0(yi, 0)])

=Dy 1(Ai(0) 4+ 6(¢t,0)
~1(A¢(0)) + c(t, 0, A¢(0)).

=

where all the variables at ¢ = 0 is 0. Then, the best labeling is achieved by
reconstructing the path from A via argmax, Sr(o) in reverse direction.

Note that F} score, which is the harmonic mean of precision and recall, is
given by A(y,y) = 2a/(p + 0), where a is the number of correctly predicted
subcomponents, p is the number of predicted subcomponents and o is the number of
correct subcomponents. Define ¢ such that é(t,0,0) = 1 if labeling t** component
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with o increases the number of predicted components given previous labeling o’
and 0 otherwise. Then the recursive rules are given by

= Di-1(A¢(0)) +6(yi, 0)
= Fi-1(Ai(0)) + c(t, 0, Ar(0))
(0 = Ny_1(As(0)) + é(t, 0, A (0)).

where V = % —6(o,yt). The best labeling is achieved by reconstructing

the path from A via argmax, Rr(o) in reverse direction.
1.4.2 Analysis

We now show that Algorithm 1.1 computes arbitrary close approximations to SVMs
by evaluating only a polynomial number of constraints so that the exponentially
many constraints are guaranteed to be satisfied up to an e-precision without explicit
evaluation. We start by providing lower bounds of the improvements in SVl\/[2A ®and
SVMlAS at each iteration of Algorithm 1.1. The proof can be found in the appendix.

Proposition 5 Let A\; = maxy{A(y;,y)} and R; = maxy{||0V;(y)||}. The dual
objective improves by at least

1 2 2
—  and mln{c€ ° } (1.19)

2AR?+ 2 8AIR?

in step 10 of Algorithm 1.1 for SVM2AS and SVMlAS respectively.

Theorem 6 With R = max; R;, A = max; /\; and for a given € > 0, Algorithm
1.1 terminates after incrementally adding at most

{ZnA 80A3R2} CA?R? +nA
max —— 0, and ———

e ’ €2 2

(1.20)

€
constraints to the working set S for the S VMlAS and S VM2A ® respectively.

Proof With S = () the optimal value of the dual is 0. In each iteration a constraint
(iy) is added that is violated by at least €, provided such a constraint exists. After
solving the S-relaxed QP in step 10, the objective will increase by at least the
amounts suggested by Proposition 5. Hence after t constraints, the dual objective
will be at least t times these amounts. The result follows from the fact that the dual

objective is upper bounded by the minimum of the primal, which in turn can be
bounded by CA and $CA for SVME*® and SVMS* respectively. [
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To make the bounds more concrete, let us now examine how R is bounded for
the special cases studied in Section 1.2. For hierarchical classification, we define
ri = ||®(x;)|| and S = maxyey ||A(y)||. Using Proposition 1 and simple derivation,
we can show that ||¥(x;,y) — ¥(x;,y)||? is upper bounded by

200 (xi,), ¥ (xi,y)) = 2] 2(x:)[IPIA ) |* < 2r}S. (1.21)

For label sequence learning, we define r; = max; | ®(x})|| and | = max; lx,. Then
¥ (xi,y) — ¥(x;,y')||? is upper bounded by

2IIZ¢> ) @ A(y ||2+77HZA” ) @A (YOI < 2R +0%)  (1.22)

In parsing, a sequence x of length [ has [ — 1 internal and [ pre-terminal nodes.
Thus, | ¥(x,y)|l1 = 20 —1. Then, | ¥(x,y) — ¥ (x,y")||l2 < /4% +4(1 — 1)2 < 2V/2.

1.5 Alternative margin formulations

2006/08/03 14:15

In addition to the margin approaches of SVMlAS and SVM2A ® a second way to
incorporate the cost function into the optimization problem is to re-scale the margin
as proposed by Taskar et al. (2003) for the special case of the Hamming loss,

n

1 C
SVMS™ in —||wl||? + = A(yiy) — (w,09; ,
! min o [|wl| n;yrgya@i( (yir¥) = (W, 6%i(y)))+

SVMQAm can be defined similarly with the squared-hinge loss. Both SVMlAm and
SVMQAm are upper bounds on iR? (w*). Dynamic programming algorithms similar
to ones in Section 1.4.1 can be given to compute

max (A(yi,y) — (w,09,(y)) . (1.23)
yEY\yi
and Algorithm 1.1 can be used for these formulations simply by changing line 6.
An advantage of SVM1 * over SVM " is its scaling invariance.

Proposition 7 Suppose A\ = n/\ with n > 0, i.e. A" is a scaled version of the
original loss /\. Then the optimal weight vector w* for SVMlA % is also optimal for
SVMZE* and vice versa, if we rescale C' = C/n.

Proof If w is fized in SVMlAS and SVMlA/S then the optimal values for £ in each
of the problems are related to another by a scale change of . By scaling C' with the
inverse of n, this effectively cancels. ]

This is not the case for SVMlAm. One needs, for example, to rescale the feature
map ¥ by a corresponding scale factor as well, which seems to indicate that one has
to calibrate the scaling of the loss and the scaling of the feature map more carefully
in the SVMlAm formulation.
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[ A6 0/1 tax 0/1 | it A  tax A |
4 training instances per class (3-fold z-val)
acc 28.32 28.32 | 27.47 29.74 +5.01 %
A-loss 1.36 1.32 1.30 1.21 | +12.40 %
2 training instances per class(5-fold z-val)
acc 20.20 20.46 | 20.20 21.73 +7.57 %
A-loss 1.54 1.51 1.39 1.33 | +13.67 %

Table 1.1 Results on the WIPO-alpha corpus. ‘it’ is a standard (flat) SVM multiclass
model, ‘tax’ the hierarchical architecture. ‘0/1’ denotes training based on the classification
loss, ‘/\’ refers to training based on the tree loss.

More importantly, SVMlAm can potentially give significant weight to output
values y € Y that are not even close to being confusable with the target values
Vi, i- e. F(x;,y;) — F(x;,y) might be large but smaller than A(y;,y). SVMlAm , on
the other hand, only depends on y for which F(x;,y;) — F(x;,y) < 1, i. e. outputs
only receive a relatively high discriminant score.

1.6 Experiments

We present experiments on hierarchical classification, label sequence learning and
parsing, reported in Tsochantaridis et al. (2005).

1.6.1 Hierarchical Classification

Experiments were performed using a 1710 document subsample of the World In-
tellectual Property Organization (WIPO)-alpha document collection. The title and
claim tags were indexed. Document parsing, tokenization and term normalization
have been performed with the MindServer retrieval engine?. The cost function A
is the height of the first common ancestor of the arguments y,y’ in the taxonomy.
Results in Table 1.1 show that the proposed hierarchical SVM learning architecture
improves the performance over the standard multiclass SVM in terms of classifica-
tion accuracy as well as in terms of the tree loss.

1.6.2 Label Sequence Learning
We performed experiments on a named entity recognition (NER) problem using

5-fold cross validation on a 300 sentence sub-corpus of the Spanish news wire
article corpus provided by CoNLL2002. The label set consists of non-name and

2. http://www.recommind.com
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Method | HMM | CRF | Perceptron | SVM

Error 9.36 5.17 5.94 5.08
Table 1.2 Results of various algorithms on the Named Entity Recognition task.

SVM, SVM5* | SVMS™
Test Err 5.14+0.6 5.14+0.8 5.14+0.7

Const 28244106 | 26264225 | 2628+119
Table 1.3 Results of various joint kernel SVM formulations on NER.

PCFG | SVM, | SVM5™® | SVMS™
Test Acc | 552 | 589 58.9 58.3
Test Fy 86.0 | 86.2 88.5 88.4
Const N/A | 7494 8043 7117

Table 1.4 Results for learning a weighted context-free grammar on the Penn Treebank.

the beginning and continuation of person names, organizations, locations and
miscellaneous names, resulting in a total of || = 9 different labels. The joint
feature map ¥(x,y) is the histogram of label-label interactions plus a set of features
describing the observation-label interactions. For both perceptron and SVM, a
second degree polynomial kernel was used. No special tuning was performed, and C
was set to 1 and € to 0.01. The cost function A is given by the Hamming distance.
Results given in Table 1.2 for the zero-one loss, compare the generative HMM
with Conditional Random Fields (CRF) Lafferty et al. (2001), perceptron Collins
(2002) and the joint kernel SVM algorithm. All discriminative learning methods
substantially outperform the standard HMM. In addition, the SVM performs
slightly better than the perceptron and CRFs, demonstrating the benefit of a
large-margin approach. Table 1.3 shows that all joint kernel SVM formulations
perform comparably, probably due to the fact the vast majority of the support
label sequences end up having Hamming distance 1 to the correct label sequence.
Note that for loss equal to 1 all SVM formulations are equivalent.

1.6.2.1 Parsing

Experiments were performed on a subset of the Penn Treebank corpus, where the
4098 sentences of length at most 10 from sections F2-21 were used as the training
set, and the 163 sentences of length at most 10 from F22 were used as the test set.
The feature representation include the grammar rules observed in the training data.
The cost function is given by A(y,y?) = 1 — Fi(ys,y). All results are for C = 1
and ¢ = 0.01. All values of C' between 107! to 10? gave comparable prediction
performance.
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The results are given in Table 1.4. For the zero-one loss (i.e. predicting the com-
plete tree correctly), the generative PCFG model using the maximum likelihood
estimate (MLE) achieves better accuracy than the max-margin approaches. How-
ever, optimizing the SVM for the Fi-loss outperforms PCFG significantly in terms
of Fi-scores. Table 1.4 also shows that the total number of constraints added to the
working set is small, roughly twice the number of training examples in all cases.

1.7 Conclusions

We presented a maximum-margin approach to learn functional dependencies for in-
terdependent and structured output spaces. The key idea is to model the problem
as a (kernelized) linear discriminant function over a joint feature space of inputs
and outputs. We showed that this framework is applicable to a wide range of prob-
lems, in particular hierarchical classification, label sequence learning and parsing.
We presented an efficient algorithm with polynomial time convergence. This algo-
rithm combines the advantages of maximum-margin classifiers and kernels with the
efficiency of dynamic programming algorithms. Experimental evaluation shows the
competitiveness of our method.
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Proof of Proposition 5

Lemma 8 For a symmetric, positive semi-definite matriz, J, let
O(a) = —1d'Ja+ (h,a) (A1)

be concave in a and bounded from above. Assume (VO (at),n) > 0 for a solution o
and an optimization directionn. Let 3 < D for some D > 0. Then the improvement
of the objective along m starting from a' 6©(3) = maxo<p<p{O(a’+ 1)} —O(at)
s bounded by

n{p {701

el (v (A2)

For special cases where n = e, and where n = e,,3<D =00, (A.2) is equivalent to

20 (.t
JWM{D&AQ?8®M@ and . Cm«ﬂf. (A3)

Jrr 8Ckr 2Jrr aﬁ.‘r

Proof Writing out 6©(8*) = 8(VO(al),n) — %Qn'J'r], solving for B to mazximize
8O (5*) yields B* = (VO(at),n)/(n'Jn). Substituting this value in §O(3*) gives
the bound on improvement with unconstraint (3,

30(5) = (VO(a'),n)*/(2n'Jn) > 0. (A.4)

If D < B* i.e. (VO(at),n)/(n'Jn) > D, due to the concavity of ®, 3= D and

5©(D) = D ((V@(at),m - gn’Jn> . (A.5)

Combining the two cases yields (A.2). Whenn =e,, (VO,n) = 27? and n'Jn =

Jrr, which yields the first term in (A.3). The second term is achieved by substituting
oo for D. [

Proof of Proposition 5. We first prove the bound for SVM2A . Using (1.15),
* nafiY)
(114)7 57 - Zy;ﬁyi C A(yi,y)
variables and the condition of step 10, namely /A(y;,y) (1 — (w*,dU;(y))) >
&F + € yields 88(? (a!) > —————. Inserting this and J,. = ||6¥;(y)
(i) Alyi,¥)
in second term of (A.3) yields the first term of the (1.19).

given by the optimality equations for the primal

2
I+ CA(TBLMS')
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Proof of Proposition 5

For SVMlAS , consider two cases:
Case I:
If the working set does not contain an element (iy), S; = 0, then we can optimize

over a5 such that a gy < A(ys, y )% D. Then, via the condition of step 10 and
>0, %(at) =1—(w*,0U;(y)) > Ag(yty) e NG Substltutmg this and
Jig) gy < R in the first term of (A.3) yields
Ce €?
00 > _— A.6
mm{ IR } (A.6)

Case II:

If S; # 0, optimization is performed over a(ig) and iy, Vy € S;. We need
to upper bound 7’Jn and lower bound (VO(a'),n). Wlog let n;y) = 1 and
Niy) = A(;y)y) 2 <0 for (iy) € S;. Then o' + An > 0 since 8 < £A(y;,¥).

In order to bound (VO (a'),n), notice that for § > € > 0,

Alysy) (1= (w*,694(3))) =& +6, (A.7a)
Alyiy) (1 —(w",60i(y))) =&, yE€Si (A.7Db)
Then via (VO(a'),n) = >, ny) (1 — (W, 0¥;(y))), we get
t _ & X(iy) 0 €
WO = Ky) < c Z Alyiy ) A6ey) - By Y

t
Using > o a’éiy) SVAYD S Yiv) < Cﬁ”’, we bound n'Jn as

Alyiy)
T]/J’r] = JiioV (0o Z (TY)J(Q')(Q') Z Z a(zy)a(zy )J(zy)(zy )
(i) (iy) — C Ay, y) 02 Ao AL
Y#Y YEYY'AY
(A.9a)
2 TLR? t
S R7 + 27A Z a(iy) + 2 Z Z Oé(zy)O[Oy) (Agb)
CA(yi,y) =~ C2 Ayi,§
Y#Y YAEYY'#Y
A 272 2 Az

< R? + 2 Rl R’ 2 < Rz 4 (Agc)

AiY)  Alyng)® T Ayiy)’
Substituting (A.8) and (A.9¢) into (A.2) yields

Ce ¢
min { SRQAQ } (A.10)
Combining (A.6) and (A.10) yields the second term of (1.19). ]
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