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In this paper we study the problem of estimating conditional probability distribu-

tions for structured output prediction tasks in Reproducing Kernel Hilbert Spaces.

More specifically, we prove decomposition results for undirected graphical models,

give constructions for kernels, and show connections to Gaussian Process classifi-

cation. Finally we present efficient means of solving the optimization problem and

apply this to label sequence learning. Experiments on named entity recognition and

pitch accent prediction tasks demonstrate the competitiveness of our approach.

1.1 Introduction

The benefits of a framework for designing flexible and powerful input represen-

tations for machine learning problems has been demonstrated by the success of

kernel-based methods in binary and multiclass classification as well as regression.

However, many real-world prediction problems also involve complex output spaces,

with possible dependencies between multiple output variables. Markov-chain de-

pendency structure is a prominent example of this kind and is ubiquous in natural

language processing (e.g. part-of-speech tagging, shallow parsing), speech recogni-

tion (e. g. pitch accent prediction), information retrieval (e. g. named entity recog-

nition) and computational biology (e. g. protein secondary structure prediction).

More complicated dependency structures such as hierarchies and parse trees are

also commonplace.
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A well-known approach for solving these problems are Conditional Random Fields

(CRFs), proposed by (Lafferty et al., 2001), an extension of logistic regression that

takes dependencies between random variables in a graph (e. g. neighboring labels

along a chain) into account. Related approaches include (Punyakanok and Roth,

2000; McCallum et al., 2000). More recently, other discriminative methods such as

AdaBoost (Altun et al., 2002), perceptron learning (Collins, 2002), and Support

Vector Machines (SVMs) (Altun et al., 2003; Taskar et al., 2003; Tsochantaridis

et al., 2004) have been extended to learning the prediction of structured objects.

In this chapter, which is an extension of our work in (Altun et al., 2004b) and

(Altun et al., 2004a) and is closely related to (Lafferty et al., 2004), we study the

problem of estimating conditional probability distributions over structured outputs

within a Reproducing Kernel Hilbert Space. Framing this as a special case of

inverse problems, we show that maximizing entropy with respect to approximate

moment matching constraints in Banach spaces leads to the maximum a posteriori

estimation and exponential families. The space in which the moments are defined

and approximated, specify a regularization of the conditional log-likelihood of the

sample. When this space is `2, we have a Gaussian Process over the structured input-

output space. Then, one can construct and learn in Reproducing Kernel Hilbert

Spaces (RKHS), thereby overcome the limitations of (finite-dimensional) parametric

statistical models and achieve the flexibility of implicit data representations.

Our framework preserves the main strength of CRFs, namely their rigorous

probabilistic semantics, which is not the case for other discriminative methods such

as max-margin approaches. There are two important advantages of a probabilistic

model. First, it is very intuitive to incorporate prior knowledge within a probabilistic

framework. Second, in addition to predicting the best labels, one can compute

posterior label probabilities and thus derive confidence scores for predictions. This

is a valuable property in particular for applications requiring a cascaded architecture

of classifiers. Confidence scores can be propagated to subsequent processing stages

or used to abstain on certain predictions. Another advantage over max-margin

methods for structured output prediction is its consistency with infinite samples.

Even though the performance of a learning method on small-sample problems do not

necessarily coincide with its performance on infinite sample, asymptotic consistency

analysis provides useful insights.

Performing density estimation via Gaussian Processes over structured input-

output spaces faces serious tractability issues, since the space of parameters, al-

though finite, is exponential in the size of the structured object. We prove decom-

position results for Markov Random fields, which allow us to obtain an optimization

problem scaling polynomially with the size of the structure. This leads to the deriva-

tion of an efficient estimation algorithm, for which we provide the details for label

sequence learning. We report experimental results on pitch accent prediction and

named-entity recognition.
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1.2 Estimating Conditional Probability Distributions over Structured Outputs

1.2.1 General Setting

In this paper, we are interested in the prediction of structured variables. The goal

is to learn a mapping h : X → Y from structured inputs to structured response

variables, where the inputs and response variables form a dependency structure.

There exists a cost function ∆ : Y × Y → <, where ∆(y, ȳ) denotes the cost of

predicting ȳ instead of y. We restrict our attention to cost functions such that

∆(y,y) = 0 and ∆(y, ȳ) > 0 for y 6= ȳ. This function is generally the standard 0-1

classification error for multiclass classification problems. However, in the structured

prediction problems, it can incorporate differences in the structure of y and ȳ, such

as Hamming loss of sequences or 1 − F1 score of parse trees.

Let us define Z as X×Y. We assume that there is a fixed but unknown distribution

P over Z according to which input/output pairs (x,y) are generated. If this

distribution was known, the optimal predictor i. e. the Bayes decision rule, is given

by

hB(x) = argmin
y∈Y

∑

y′ 6=y

p(y′|x)∆(y′,y). (1.1)

In the special case of 0-1 loss, this is equivalent to hB(x) = argmax
y∈Y p(y|x).

Then, one can reduce the (structured) prediction problem to one of estimating the

conditional distribution p(y|x) and performing the argmin operation as in (1.1).

1.2.2 Maximum Entropy with approximate matching

In supervised learning, we are given a sample S of ` input-output pairs S =

{(x1,y1), . . . , (x`,y`)}. There exists a set of measurements relevant for the learning

task, commonly referred as moment or feature functions, φ : Z → B, where B

is a Banach space in the most general form of the problem. The goal is to find

the conditional probability distribution p over Y|X such that the expectation of

the features with respect to p(y|x) for all xinSx (Ey∼p[φ(x,y)|x]) matches their

empirical values (φ̃), Ey∼p[φ(x,y)|x] = φ̃, Here Sx denotes the set of ` inputs in

S, {xi} for i = 1, . . . , `. The empirical values of the features are generally derived

from the sample by

φ̃ =
1

`

∑̀

i=1

φ(xi,yi). (1.2)

This estimation task is an instance of a more general problem, namely the inverse

problem, where the goal is to find x satisfying Ax = b. Inverse problems are known

to be ill-formed and are stabilized by imposing a regularity or smoothness measure,

such as the entropy of the distribution (Ruderman and Bialek, 1994). Then, the

estimation problem can be formulated as finding the maximum entropy distribution
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p (equivalently minimizing the relative entropy of p with respect to a constant

distribution) such that it satisfies the moment matching constraints,

min
p

KL(p‖q) subject to Ey∼p[φ(x,y)|x] = φ̃.

In general, it is very difficult to satisfy the moment matching constraints exactly,

especially when the number of features can be very large (and possibly infinite).

For example, the solution may lie on the boundary of a feasibility region. Moreover,

this can lead to severe overfitting of the data. In order to overcome this obstacle,

the constraints can be relaxed to approximate matches such that the difference

between the expected and the empirical values are small with respect to the norm

of the space B, denoted by ‖.‖
B

. An adaptation of Theorem 8 of (Altun and Smola,

2006) gives the solution of this estimation problem and establishes the duality

connection between the KL divergence minimization with approximate moment

matching constraints and the maximum a posteriori (MAP) estimation.

Theorem 1 (Approximate KL Minimization) Let p, q be conditional probabil-

ity distributions over Y|X and S be a sample of size `. Moreover, φ : Z → B is a

mapping from Z to a Banach space B, φ̃ ∈ B and B∗ is the dual space of B. Then,

for any ε ≥ 0 the problem

min
p

KL(p‖q) subject to
∥

∥

∥Ey∼p[φ(x,y)|x] − φ̃
∥

∥

∥

B
≤ ε

has a solution of the form

pw(y|x) = q(y|x) exp (〈φ(x,y),w〉 − g(w;x)) (1.3)

where w ∈ B∗ and g is the log-partition function guaranteeing p to be a probability

distribution. Moreover, the optimal value of w is found as the solution of

min
w

−
〈

φ̃,w
〉

+
1

`

∑

x∈Sx

g(w;x) + ε ‖w‖
B∗ . (1.4)

Equivalently, for every feasible ε, there exists a Λ ≥ 0 such that the minimum of

−
〈

φ̃,w
〉

+ 1
`

∑

x∈Sx

g(w;x) + Λ
2 ‖w‖

2
B∗ minimizes (1.4).

Note that the well-known connection between conditional maximum entropy opti-

mization (MaxEnt) with exact moment matching constraints and conditional maxi-

mum likelihood estimation is a special case of Theorem 1 with ε = 0 . Thus, relaxing

the constraints corresponds to a regularization in the dual problem scaled by the

relaxation parameter. Since the dual (1.4) is an unconstrained optimization prob-

lem (over a possibly finite domain), it is common to solve the density estimation

problem by performing the optimization in the dual space.
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1.2.3 Exponential Families

As we have seen in (1.3), exponential families arise from the optimization of KL

divergence with respect to (approximate) moment matching constraints. Here w is

called the canonical or natural parameter, φ(x,y) is the corresponding vector of

sufficient statistics and g(w;x) is the log-partition function or moment generating

function.

g(w;x) := log
∑

y∈Y

exp(〈φ(x,y),w〉)q(y|x) . (1.5)

The log-partition function plays an important role in estimating probability distri-

butions. In particular, it can be used to compute the moments of the distribution,

see e.g. Lauritzen (1996):

Proposition 2 g(w;x) is a convex C∞ function. Moreover, the derivatives of g

generate the corresponding moments of φ

∂wg(w;x) = Ey|x∼pw
[φ(x,y)] Mean (1.6a)

∂2
w
g(w;x) = Covy|x∼pw

[φ(x,y)] Covariance . (1.6b)

It is important to use exponential families with rich sufficient statistics. One

can show that if φ(z) for z = (x,y) ∈ Z is powerful enough, exponential families

become universal density estimators, in the sense that the set of all functions of

the form 〈w, φ(.)〉 is dense in the set of all bounded continous functions defined on

C0(Z). This is advantageous, as it can open the domain of nonparametric estimation

to an area of statistics which so-far was restricted to parametric distributions. In

Proposition 3, we show that exponential families can in fact be dense over C0(Z), if

they are defined with respect to a universal kernel. More precisely, we restrict the

Banach space B be a Reproducing Kernel Hilbert Space (RKHS) with the kernel

function k and define a linear discriminant function F : Z → < as

F (.) = 〈φ(.),w〉 , (1.7)

for F ∈ H such that

F (z) = 〈F, k(z, ·)〉
H

(1.8)

where φ is the feature map induced by k. We can now represent p as a function of

w and F interchangeably.
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Proposition 3 (Dense Densities) Let Z be a measurable set with respect to the

Lebesgue measure. Moreover, let H be universal and P be the space of C0(Z)

densities with ‖p‖∞ <∞. Then the class of exponential family densities

PH := {pF |pF (z) : F exp (F (z) − g(F )) and F ∈ H} (1.9)

where g(F ) := log

∫

Z

exp (F (z)) dz

is dense in P. Moreover, for any p ∈ P with ‖ log p‖∞ ≤ C and ε < 1 we have

‖log p− F‖∞ ≤ ε implies D(p‖pF ) ≤ 2ε and ‖p− pF ‖∞ ≤ 4εeC (1.10)

Proof We prove the second part first: Let ε > 0. If ‖log p‖∞ ≤ C, we can find

some F ∈ H such that ‖F − log p‖∞ ≤ ε. By the definition of g(F ) it follows that

|g(F )| =

∣

∣

∣

∣

∣

log
∑

z

exp(F (z))dz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

log p(z)

∫

z

exp(F (z) − log p(z))dz

∣

∣

∣

∣

≤ ε. (1.11)

Since log pF = F − g(F ) have ‖log p− log pF ‖∞ ≤ 2ε. This immediately shows the

first part of (1.10). For the second part, all we need to do is exponentiate the bound

and use the fact that log p is bounded by C.

To see the general result, pick some δ < ε/Z with ε < 1, where Z is the

measure of Z. Moreover, let pδ(z) := max(p(z), δ). Finally, pick F such that

‖F − log pδ‖ ≤ ε. By the same reasoning as in (1.11) it follows that |g(F )| ≤ 2ε.

Hence ‖p− pF ‖ ≤ 4ε ‖p‖∞. Since ε was arbitrary, this proves the claim.

Note that a similar result can be obtained whenever Z is endowed with a measure ν,

if we state our results for densities whose Radon-Nikodym derivatives with respect

to ν satisfies the properties above. Moreover, similar results apply for the conditional

densities, as long as log p(y|x) is a well behaved function of x and the kernel k is

universal kernel in y for every x.

Many RKHS H are dense in C0(X). See Steinwart (2001) for examples and a

proof. This shows that choosing a density from a suitable exponential family is not

restrictive in terms of approximation quality.

1.2.4 Objective Function and Relationship to Gaussian Processes

Theorem 1 establishes that, when B is an RKHS, our density estimation problem

is given by

min
w

−
〈

φ̃,w
〉

+
1

`

∑̀

i=1

g(w;xi) +
Λ

2
‖w‖

2
2 .

Thus, we perform a regularized maximum likelihood estimate, where a normal

distribution is assumed as a prior on w. It follows from (Williams, 1999) that a

normal prior on w corresponds to a Gaussian Process on the collection of random

variables F (z) with zero mean and a covariance function k, where k is the kernel
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associated with RKHS H and F is defines as in (1.7). Using (1.2), (1.5), (1.7) and

(1.8), we can rewrite the optimization as

F ∗ = argmin
F∈H

1

`

∑̀

i=1



−F (xi,yi) + log
∑

y∈Y

exp(F (xi,y))



 +
Λ

2
‖F‖

2
H
. (1.12)

Equivalently, F ∗ maximizes

p(F |S) ∝ p(F )
∏

i

p(yi|xi;F ) (1.13)

where p(F ) ∝ exp(Λ
2 ‖F‖

2
H

). In Gaussian Process classification, (1.13) is approxi-

mated by a Gaussian and F ∗ is the mode of the Gaussian approximating p(F |S)

by a second order Taylor expansion of the log-posterior via Laplace approximation.

Given F ∗, one can approximate the curvature C at the mode and use this normal

distribution p(F |S) ≈ N(F ∗,C) to obtain the predictive distribution of a new input

x via

p(y|S,x) =

∫

p(y|x, F )p(F |S)dF.

Unfortunately, the Bayesian approach faces tractability problems with even mod-

erate datasets during training. Exact inference for structured output prediction is

intractable (Qi et al., 2005) and even the approximate inference is very expensive.

Also motivated by the maximum entropy principle, we use the MAP estimate F ∗

to obtain the predictive distribution p(y|S,x) ≈ p(y|F ∗(x, .)).

1.2.5 Subspace Represention

The Representer Theorem (Kimeldorf and Wahba, 1970) guarantees that F ∗, the

optimizer of (1.12) is of the form

F ∗(x,y) =
∑̀

i=1

∑

ȳ∈Y

α(xi,ȳ)k((x,y), (xi , ȳ)), (1.14)

with suitably chosen coefficients α. Note that there is one α(i,ȳ) coefficient for every

training example xi and its possible labeling ȳ, due to the fact that F is defined

over X× Y and the log-partition function sums over all ȳ ∈ Y for each xi ∈ S. The

feature map φ over Z is induced by the kernel function k via

k((x,y), (x̄, ȳ)) = 〈φ(x,y), φ(x̄, ȳ)〉 .

Thus, in complete analogy to Gaussian Process classification and other kernel meth-

ods, we can perform the estimation and prediction by computing the inner products

between sufficient statistics without the need for evaluating φ(x,y) explicitly.

Although the application of the Representer Theorem reduces the optimization

problem from an infinite dimensional space (H) to a finite dimensional space scaling
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with the size of the sample and the size of Y (<`|Y|), this formulation suffers from

scalability issues. This is because in the structured output prediction problems, |Y|

is very large, scaling exponentially in the size of the structure. However, if there

is a decomposition of the kernel into substructures, then the dimensionality can

be reduced further. We now show that such a decomposition exists when (x,y)

represents a Markov Random Field (MRF).

Let G be an undirected graph, C be the set of maximal cliques of G, z be a

configuration of G and zc be the restriction of z on the clique c ∈ C. The well-

known theorem of Hammersley and Clifford (1971), Theorem ??, states that the

density over Z decomposes into potential functions defined on the maximal cliques

of G. Using this theore, it is easy to show that the Gibbs form translates into a

simple decomposition of the kernel functions on Markov Random Fields.

Lemma 4 (Decomposition of kernels on MRFs) For positive probability den-

sity functions over a MRF Z on G, the kernel k(z, z̄) = 〈φ(z), φ(z̄)〉 satisfies

k(z, z̄) =
∑

c∈C

k(zc, z̄c). (1.15)

Proof We simply need to show that the sufficient statistics φ(z) satisfy a de-

composition over the cliques. From Theorem 1 and Theorem ??, we know that

F (z) = 〈φ(z),w〉 =
∑

c∈C
ψc(zc;w) for all z ∈ Z and any w. Then, we can pick an

orthonormal basis of w, say ei and rewrite

〈φ(z), ei〉 =
∑

c∈C

ηi
c(zc)

for some scalar functions ηi
c(zc). The key point is that ηi

c depends on z only via its

restriction on zc. Setting φc(zc) := (η1
c (zc), η

2
c (zc), . . .) allows us to compute

〈φ(z),w〉 =

〈

φ(z),
∑

i

eiwi

〉

=
∑

i

wi 〈φ(z), ei〉 =
∑

c∈C

∑

i

wiη
i
c(zc).

Rearranging terms shows that φ decomposes into φ(z) = (φc1
(zc1

), . . . , φcn
(zcn

)).

Setting

k(zc, z̄c) = 〈φc(zc), φc(z̄c)〉 (1.16)

satisfies the claim 1.

Many applications involve a family of graph structures such that some subsets

of cliques in these graphs share the same potential function. For instance, in

1. Note that similar decomposition results can be achieved by selecting other basis
functions. This might lead to interaction across different cliques. However, one can reduce
such formulations to the decomposition presented in this lemma via rotating the basis
functions.
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Time t− 2 t− 1 t t + 1 t + 2

X '&%$ !"#x '&%$ !"#x '&%$ !"#x '&%$ !"#x '&%$ !"#x

Y '&%$ !"#y '&%$ !"#y '&%$ !"#y '&%$ !"#y '&%$ !"#y

Figure 1.1 A time invariant Markov chain with three types of cliques.

the case of Markov chains that are time invariant, there exists three types of

cliques, x − x, x − y and y − y. Figure 1.2.5 shows these types of cliques with

red,blue and green respectively, where same colored cliques share the same potential

function. For such graphs, the decomposition in Lemma 4 corresponds to k(z, z̄) =
∑

c∈Cz

∑

c̄∈Cz̄

k(zc, z̄c̄), where Cz denotes the set of maximal cliques in z and

k(zc, z̄c̄) = 0 if c and c̄ are of different types. In order to simplify our future notation,

we define W as the set of all possible clique configurations for all cliques defined

over the set of Markov fields and θzω as the number of times the clique configuration

ω ∈ W occurs in z. Then,

k(z, z̄) =
∑

ω,ω̄∈W

θzωθ
z̄

ω̄k(ω, ω̄) (1.17)

We can now use this result to decompose the linear discriminant F given by (1.8)

into a linear discriminant function f : W → < over cliques by

Ff (z) =
∑

ω∈W

θzωf(ω), (1.18)

f(ω) = 〈f, k(ω, .)〉
H
. (1.19)

This gives us a new optimization problem with a subspace representation

f∗ = argmin
f∈H

1

`

∑̀

i=1



−Ff (xi,yi) + log
∑

y∈Y

exp(Ff (xi,y))



 +
Λ

2
‖f‖2

H
, (1.20)

f∗(ω) =
∑

ω̄∈W(Sx)

γω̄k(ω, ω̄). (1.21)

where W(S) ⊆ W denotes the set of clique assignments with non-zero counts for

any (x,y) for all x ∈ Sx and all y ∈ Y. The subspace representation (1.21) holds

immediately through a simple variant of the Representer Theorem Lafferty et al.

(2004); Altun et al. (2006) for any local loss function, where locality is defined as

follows:

Definition 5 (Local loss function) A loss L is local if L(x,y, f) is determined

by the value of f on the set W({x}), i.e., for f, g : W → < we have that if

f(p) = g(p) for all p ∈ W({x}) then L(x,y, f) = L(x,y, g).
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Note that the log-loss in (1.20) is local due to the decomposition of kernels on

MRFs. This reduces the number of parameters from exponential in the size of the

structure (number of vertices for MRF) to linear in the number of cliques and

exponential in the number of vertices in the maximal cliques, which is generally

much smaller than the total number of vertices. In this paper, we restrict our focus

to such MRFs. For instance, in the Markov chain example, let the length of the

chain be m and the number of possible label assignment for each vertex be n. Then,

the number of parameters is reduced from nm to mn+n2. Note that since our goal

is to estimate p(y|x), which is independent of x−x cliques, there are no parameters

for such cliques. In general, the set of cliques for which the restriction of (x,y) are

solely contained in x are irrelevant.

1.3 A Sparse Greedy Optimization

Using the representation of f∗ over the subspaces of Z, let us re-state our optimiza-

tion in terms of the subspace parameters γ. Let K be the matrix of kernel values

of clique assignments k(ω, ω̄) for all ω, ω̄ ∈ W(Sx) and θz be the vector of clique

counts θzω in z for all ω ∈ W(Sx). Then, the linear discriminant F can be written

as

Fγ(x,y) = γT Kθ(x,y)

and the optimization problem is given by minimizing R(γ;S) with respect to γ

where

R(γ;S) =
1

`

∑̀

i=1



−γTKθx
i,yi

+ log
∑

y∈Y

exp(γT Kθx
i,y)



 +
Λ

2
γT Kγ. (1.22)

We now have a polynomial size convex optimization problem, whose Jacobian

and Hessian is

∂γR =
1

`

∑̀

i=1

(

−Kθ(x
i,yi) + KEy∼pγ

[

θ(x
i,y)|

])

+ ΛKγ (1.23a)

∂2
γR =

1

`

∑̀

i=1

Covy∼pγ
[Kθ(x

i,y)] + ΛK. (1.23b)

Note that each term of the Hessian is computed by

∂2
γω,γω̄

R =Λk(ω, ω̄)

+1/`
∑̀

i=1

∑

ω′,ω′′

k(ω, ω′)k(ω̄, ω′′)
(

Ey

[

θ
(xi,y)
ω′ θ

(xi,y)
ω′′

]

−Ey

[

θ
(xi,y)
ω′

]

Ey

[

θ
(xi,y)
ω′′

])

.
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which involves correlation between configuration assignments of different cliques

(Ey

[

θ
(xi,y)
ω′ θ

(xi,y)
ω′′

]

). Such correlations can be prohibitively expensive. For instance,

in the Markov chain example, the complexity of the computation of the Hessian

scales quadratically with the length of the chain. For this reason, we perform quasi-

Newton optimization which simply requires 1st order derivatives. The expectations

can be computed using a dynamic programming algorithm in polynomial time with

the size of the structure. For example, the expectations in Markov chains can be

computed using the Forward-Backward algorithm whose complexity scales linearly

in the length of the chain.

While optimization over the complete γ space is attractive for small data sets,

the computation or the storage of K poses a serious problem when the data set

is large. Also, classification of a new observation involves evaluating the kernel

function at all the cliques in W(Sx), which may be more than acceptable for many

applications. Hence, as in the case of standard Gaussian Process Classification, one

may have to find a method for sparse solutions in terms of the γ parameters to

speed up the training and prediction stages. We perform a sparse greedy subspace

approximation algorithm along the lines of the method presented by Zhang (2003).

In order to motivate this algorithm, we present the following lower bound on convex

functions which is simply a tangent of the convex function.

Lemma 6 (Lower Bound on Convex Functions) Let C : Θ → < be a convex

function on a vector space and θ0 ∈ Θ. We denote by g ∈ ∂θC(θ0) a vector in the

subdifferential of C at θ0. Then

min
θ∈Θ

C(θ) + ‖θ‖2 ≥ C(θ0) + ‖θ0‖
2 − ‖

g

2
+ θ0‖

2. (1.24)

Proof Since C is convex, it follows that for any subdifferential g ∈ ∂θC(θ0) we

have C(θ) ≥ C(θ0) + g>δθ. Consequently,

min
θ∈Θ

C(θ) + ‖θ‖2 ≥ min
δθ∈Θ

C(θ0) + g>δθ + ‖θ0 + δθ‖2. (1.25)

The minimum is obtained for δθ = −( g
2 + θ0), which proves the claim.

This bound provides a valuable selection and stopping criterion for the inclusion of

subspaces during the greedy optimization process. Note in particular that g + 2θ0

is the gradient of the optimization problem in Eq. (1.24), hence we obtain a lower

bound on the objective function in terms of the L2 norm of the gradient. This

means that optimization over a subspace spanned by a parameter is only useful if

the gradient in the corresponding direction is large enough.

Let γ̂ denote the sparse linear combination of basis vectors in W(Sx) and K̂

denote the matrix of the kernel function evaluated at basis vectors in γ̂ and all

W(Sx). The Sparse Greedy Subspace Approximation (SGSA) algorithm starts with

an empty matrix K̂. At each iteration, it selects a training instance xi and computes

the gradients of the parameters associated with clique configurations ω ∈ W({xi})

to select d coordinates with the largest absolute value of the gradient vector of
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R over this subspace 2. We denote those coordinates by v. Then, R (which is

defined via K̂ rather than K now) is optimized with respect to γv using a Quasi-

Newton method. Finally, γ̂ is augmented with the selected subspaces γ̂ = [γ̂ ′, γ′
v
]′

and K̂ is augmented with the columns associated with the selected subspaces, Keω

for each selected ω ∈ v. This process is repeated until the gradients vanish (i.e.

they are smaller than a threshold value η) or some sparseness level is achieved

(i. e. a maximum number p of coordinates are selected). Notice that the bottleneck

of this method is the computation of the expectations of the clique assignments,

Ey

[

θ
(x,y)
ω

]

. Therefore, once the expectations are computed, it is more efficient to

include multiple coordinates rather than a single coordinate. This number, denoted

by d, is a parameter of the algorithm.

We consider two alternatives for choosing the training sequence at each iteration.

One method is to choose the input x whose set of cliques W({x}) has the highest

magnitude gradients. Another option is simply to select a random input from the

sample.

Algorithm 1.1 Sparse Greedy Subspace Approximation (SGSA) algorithm.

Require: Training data (xi,yi)i=1:`; Maximum number of coordinates to be selected,
p; Number of coordinates to be selected at each iteration, d; Threshold value for
gradients, η.

1: K̂← [], γ̂ ← []
2: repeat

3: Pick i:
4: (1) Pick i where ω = arg maxω̄∈W(Sx) |∂γω̄ R| and ω ∈W({xi}), or
5: (2) Pick i ∈ {1, . . . , `} randomly
6: v← argmax(d)

ω∈W({xi}) |∂γω R| via (1.23a)
7: Optimize R wrt γv via dynamic programming.
8: Augment γ̂ = [γ̂; γv].
9: Augment K̂← [K̂;Keω] for all ω ∈ v

10: until ∂γR < η or p coordinates selected.

When the input pattern is selected randomly, SGSA becomes an instance of

coordinate descent or Gauss-Seidel method. This method is guaranteed to converge

to the unique minimum asymptotically irrespective of coordinate selection sequence

and the initial vector, if the optimization function is convex (Murty, 1998), which

is the case for R. If we consider the convex sets of W(Sx), Theorem II.1 of (Zhang,

2003) shows that this algorithm has an O(1/k) convergence rate where k denotes

the number of iterations.

2. In Algorithm 1.1, argmax(d)
x

f(x) selects the d number of x that maximize f(x).
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Theorem 7 (Zhang (2003)) Let Mγ be an upper bound on R′′(γ). Then, after k

iterations of the algorithm we have

R(γ̂k;S) −R(γ∗;S) ≤ 2Mγ/(k + 2)

where γ∗ is the true minimizer of R(γ;S) and γ̂k is the estimate at the k iteration.

Note in the above analysis, it is assumed that γω ≥ 0, ∀ω. This is obviously a

special case of the SGSA algorithm. However, introducing the negative of all features

functions enable us to generalize the non-negativity constraint and therefore apply

Theorem 7.

One can establish better convergence rates if the best training sequence selection

criteria (Line 4) is not prohibitively expensive. In this case, SGSA becomes an

approximation of Gauss-Southwell method, which has been show to have linear

converge rate of the form

R(γ̂k+1;S) −R(γ∗;S) ≤

(

1 −
1

η

)k

(R(γ̂k;S) −R(γ∗;S))

where 1 < η <∞ (Ratsch et al., 2002). Here, η depends polynomially on |W(Sx)|.

It also has dependency on Mγ . In practice, we observed that the random selection

yields faster (approximate) convergence in terms of computational time. Therefore,

we report experiments with this selection criteria.

1.4 Experiments: Sequence Labeling

We proceed to experiments on a specific structured prediction task, namely sequence

labeling, and apply our method to two problems, pitch accent prediction and named

entity recognition. We consider the chain model in (1.2.5), whose clique-structure

comprises of (yt, yt+1) and (xt, yt) for all positions t in the sequence. Let Σ be the

set of labels for each vertex, n = |Σ| and δ be the Kronecker delta where δ(a, b) is

1 if a = b, and 0 otherwise. The features corresponding to the label-input cliques

φ(xt, yt) is given by the concatenation of vectors (δ(yt, σ)φ(xt)) for all σ ∈ Σ

φ(xt, yt) = (δ(yt, σ1)φ(xt)
T , . . . , δ(yt, σn)φ(xt)

T )T . (1.26)

This corresponds to the standard multiclass classification representation where

the weight vector is given by the concatenation of the weight vector of each

class w = (w′
1, . . . ,w

′
n)′. (1.26) is concatenated with a vector of 0’s whose size

is given by the number of features representing label-label dependencies. The

features corresponding to the label-label cliques φ(yt, yt+1) is given by the vector of

(δ(yt, σ)δ(yt+1, σ̄)) for all σ, σ̄ ∈ Σ. This vector is concatenated to a 0 vector whose

size is given by the number of features representing input-label dependencies.
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Then, via (1.16) the kernel function over the cliques is

k((xt, yt), (x̄t̄, ȳt̄)) = δ(yt, ȳt̄)k̄(φ(xt), φ(x̄t̄)),

k((yt, yt+1), (ȳt̄, ȳt̄+1) = δ(yt, ȳt̄)δ(yt+1, ȳt̄+1),

and clearly the kernel value of different clique types is 0, as discussed in Sec-

tion 1.2.5. The exponential family represented by this kernel function gives us a

semi-parametric Markov Random Field. Note, when k̄ is the linear kernel, we obtain

the regularized density estimation problem of Conditional Random Fields (Lafferty

et al., 2001).

The major computation in Algorithm 1.1 is the computation of R and ∂γR,

which reduces to computing the expectations of clique configurations. For Markov

chains, this is done by the Forward-Backward algorithm, using the transition and

the observation matrices defined with respect to γ. The transition matrix is a

|Σ| × |Σ| matrix common for all input sequences. The observation matrix of x

is a T × |Σ| matrix where T is the length of x. Let us denote the configurations of

cliques of type label-input by Wx−y ⊂ W(Sx) and the configurations of cliques of

type label-label by Wy−y ⊂ W(Sx). Furthermore for ω ∈ Wx−y, let ωx and ωy be

the input and label configuration of the clique ω respectively. Then the two matrices

are given by

T (σ, σ̄) =
∑

ω∈Wy−y

δ(ω, (σ, σ̄))γω (1.27a)

Ox(t, σ) =
∑

ω∈Wx−y

δ(ωy, σ)γω k̄(xt, ωx) (1.27b)

In sequence labeling, the cost function ∆ is generally the Hamming loss. Then,

given a new observation sequence x, our goal is to find y∗ via (1.1)

y∗ = argmin
y

∑

y′ 6=y

pγ(y′|x)

T
∑

t=1

[[yt 6= y′t]]

= argmax
y

∑

t

∑

y′:y′

t=yt

pγ(y′|x).

Thus, the best label sequence is the one with the highest marginal probability at

each position, which can be found by the Forward-Backward algorithm. Note that

this is different from finding the best label sequence with respect to p(.|x) which is

given by the Viterbi algorithm.

1.4.1 Pitch accent prediction

Pitch accent prediction, a sub-task of speech recognition, is detecting the words

that are more prominent than others in an utterance. We model this problem as

a sequence annotation problem, where Σ = {±1}. We used Switchboard Corpus

(Godfrey et al., 1992) to experimentally evaluate the described method by ex-
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Figure 1.2 Test accuracy of Pitch Accent Prediction task.

tracting 500 sentences from this corpus and running experiments using 5-fold cross

validation. Features consist of probabilistic, acoustic and textual information from

the neighborhood of the label over a window of size 5 (Gregory and Altun, 2004).

We chose polynomial kernel of different degrees for kernel over the inputs.

We compared the performance of CRFs and HM-SVMs(Altun et al., 2003)

with the dense and sparse optimization of our approach according to their test

accuracy on pitch accent prediction. When performing experiments on the dense

optimization, we used polynomial kernels with different degrees (denoted with

DGPSX in Figure 1.2 where X ∈ {1, 2, 3}is the degree of the polynomial kernel). We

used third order polynomial kernel in HM-SVMs (denoted with SVM3 in Figure 1.2)

As expected, CRFs and DGPS1 performed very similar. When 2nd order features

were incorporated implicitly using second degree polynomial kernel (DGPS2), the

performance increases. Extracting 2nd order features explicitly results in a 12 million

dimensional feature space, where CRFs slow down dramatically. We observed that

3rd order features do not provide significant improvement over DGPS2. HM-SVM3

performs slightly worse than DGPS2.

To investigate how the sparse optimization (denoted by SGPS) affects the per-

formance, we report the test accuracy with respect to the sparseness of solution in

Figure 1.3 using the random training sequence selection criteria where the number

of parameters selected at each iteration d is 3 3. Sparseness is measured by the

percentage of the parameters selected. The straight line is the performance of the

dense optimization using second degree polynomial kernel. Using 1% of the param-

eters, SGPS achieves 75% accuracy (1.48% less than the accuracy of dense one).

When 7.8% of the parameters are selected, the accuracy is 76.18% which is not

significantly different than the performance of the dense optimization (76.48%).

We observed that these parameters were related to 6.2% of the observations along

3. The results reported here and below are obtained using a different set of features where
the performance of the dense algorithm is 76.48%.
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Figure 1.3 Test accuracy of Pitch Accent Prediction w.r.t. the sparseness of GPS
solution.

with 1.13 label pairs on average. Thus, during inference one needs to evaluate the

kernel function only at about 6% of the observations which reduces the inference

time dramatically.

In order to experimentally verify how useful the predictive probabilities are as

confidence scores, we forced the classifier to abstain from predicting a label when

the probability of an individual label is lower than a threshold value. In Figure 1.4,

we plot precision-recall values for different thresholds. We observed that the error

rate decreased 8.54%, when the classifier abstained on 14.93% of the test data. The

improvement on the error rate shows the validity of the probabilities generated by

the classifier.

1.4.2 Named Entity Recognition

Named Entity Recognition (NER), a subtask of Information Extraction, is finding

phrases containing names in a sentences. The individual labels consists of the

beginning and continuation of person, location, organization and miscellaneous

names and non-name. We used a Spanish newswire corpus, which was provided for

the Special Session of CoNLL 2002 on NER, to select 1000 sentences (21K words).

As features, we used the word and its spelling properties from a neighborhood of

size 3.

The experimental setup was similar to pitch accent prediction task. We compared

the performance of CRFs with and without the regularizer term (CRF-R, CRF

respectively) with the dense and sparse optimizations of our approach methods.

We set the sparseness parameter of SGPS to 25%, i.e. p = 0.25|W(Sx)||Σ|2, where

|Σ| = 9 and W(Sx) = 21K on average. The results are summarized in Table 1.1.
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Figure 1.4 Precision-Recall curves for different threshold probabilities to abstain on
Pitch Accent Prediction

DGPS1 DGPS2 SGPS2 CRF CRF-R

Error 4.58 4.39 4.48 4.92 4.56

Table 1.1 Test error of Named Entity Recognition task.

Qualitatively, the behavior of the different optimization methods is comparable

to the pitch accent prediction task. Second degree polynomial DGPS achieved

better performance than the other methods. SGPS with 25% sparseness achieves an

accuracy that is only 0.1% below DGPS. We observed that 19% of the observations

are selected along with 1.32 label pairs on average, which means that one needs to

compute only one fifth of the gram matrix. Note, CRF without the regularization

term corresponds to the maximum likelihood estimate, i. e. the estimation of the

probability distribution such that the expectation of the features match exactly

the empirical values. The loss of accuracy in this case shows the importance of the

relaxation of the moment matching constraints.

1.5 Discussion

We presented a method for estimation conditional probability distributions over

structured outputs within RKHSs. This approach is motivated through the well-

established Maximum-Entropy framework. It combines the advantages of the rig-

orous probabilistic semantics of CRFs and overcomes the curse of dimensionality

problem using kernels to construct and learn over RHKSs. The decomposition re-
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sults for MRFs renders the problem tractable. Using this decomposition, we pre-

sented an efficient sparse approximate optimization algorithm. Empirical analysis

showed that our approach is competitive with the state-of-the-art methods on se-

quence labeling.

Cost sensitivity is an important aspect in structured output prediction problem.

For cost functions which decompose into cliques, such as the Hamming loss in

the sequence applications, we proposed estimating the conditional distribution

and performing the cost sensitive inference efficiently. Another approach is to

incorporate the cost function in the optimization problem. If the cost function

decomposes into the cliques, then the method presented here can be applied with

minor changes. If this is not the case, the decomposition results may not hold, which

may pose serious tractability problems.

Investigating the density estimation problem within the Maximum-Entropy

framework points out to new directions in terms of regularizations. In particu-

lar, defining the metric of the Banach space appropriately, one can impose different

regularizations for features that possess different characteristics, such as features

encoding inter-label dependencies and features encoding observation-label depen-

dencies in sequences. This is one of the topics of our future work.
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