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Abstract. In contrast to the standard inductive inference setting of predictive ma-
chine learning, in real world learning problems often the test instances are already
available at training time. Transductive inference tries to improve the predictive
accuracy of learning algorithms by making use of the information contained in
these test instances. Although this description of transductive inference applies to
predictive learning problems in general, most transductive approaches consider
the case of classification only. In this paper we introduce a transductive variant of
Gaussian process regression with automatic model selection, based on approxi-
mate moment matching between training and test data. Empirical results show
the feasibility and competitiveness of this approach.

1 Introduction

Machine learning research mostly concentrates on estimating an underlying unknown
conditional or functional dependence of a target property on some other variables. This
estimate is based on a set of training instances, respecting this dependency. It is then
usually applied to test instances for which the target property has not been observed.
This setting is known as supervised learning or inductive inference. The downside of
such algorithms is that they ignore the test data at training time even when such data is
available. In this case, transductive inference approaches promise improved predictive
accuracy as they exploit available knowledge about the test instances at training time.
A related class of methods are semi-supervised learning algorithms that take advantage
of additional unlabeled data which may or may not be used for testing purposes. See,
e.g., [1] for an overview of recent results.

This work has led to a number of competitive algorithms mostly making use of the
“cluster assumption”, i.e., that “the decision boundary should not cross high-density
regions”, e.g., [2]]. Although the transductive as well as the semi-supervised learning
settings have no inherent restriction to classification only, there is so far very little work
on transductive nor semi-supervised regression or structural prediction. Most work on
transductive or semi-supervised regression is primarily concerned with designing ker-
nel matrices such as the inverse graph Laplacian [3/4] or related matrices [5)6] on both
labeled and unlabeled data. Similarly, Bayesian Committee Machines [7] can also be
considered as a transductive method where the test data is incorporated in the compu-
tation of the kernel [8]. In [9] the labels for the test data are chosen to minimise the
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leave-one-out error of ridge regression on the joint training and test data and are con-
straint to be close to the inductive solution. In [10] the disagreement on unlablelled data
between the hypotheses and an origin function is minimised and in [11] the disagree-
ment on unlablelled data between hypotheses from different views is minimised.

In this paper we introduce a transductive algorithm for Gaussian process regression.
The algorithm is based on the idea that the moments on training and test set, i.e., mean
and variance, should match approximately. This is a realistic assumption in many real-
world datasets and theoretically justified by the assumption of iid data and the obser-
vation that scalar quantities are much more concentrated around their mean than, say,
the distribution of maximum a posteriori estimators. More precisely, let {y1,...,¥ym}
denote the labels on the training data. We make sure that the observed mean and vari-
ance on the training set match the predicted mean and variance on the test set E [y] or
E [yQ] In the present paper we achieve this by directly modifying the prior such that
only parameters which are consistent between training and test set are considered in the
inference procedure. The algorithm has the potential of being combined with previous
approaches based on modifying the kernel or on minimising the disagreement between
hypotheses.

In this fashion our setting draws on [12] which studies transductive classification
based on a similar principle, namely that the predicted conditional class probabilities
should match the observed counts on the training set. While we frame our approach
in terms of a homoscedastic Gaussian Process estimator [13] it is readily extensible to
heteroscedastic estimation [[14], albeit at the expense of additional complication in the
notation.

This paper is organized as follows: SectionP]introduces Gaussian process regression
and model selection strategies for Gaussian processes. Our general approach to trans-
ductive Gaussian processes with automatic model selection is described in Section
and the optimization details are laid out in Section [ Finally, Section [3] contains our
empirical findings and Section[@] concludes.

2 Gaussian Process Regression

2.1 Setting

We begin with a very brief overview over Gaussian Process (GP) Regression, as de-
scribed, e.g., in [15/13]]. Denote by X x ) the domain of patterns and labels respec-
tively from which m pairs (x;,y;) are drawn independently and identically distributed
(iid). For regression assume that ) C R. Moreover assume that there exists a Gaussian
process on X with covariance kernel £ : X x X — R and mean i : X — R. For
notational convenience we set u(x) = 0, i.e., we ignore the offset for the remainder of
the paper.

The key assumption of GP regression is that y is given by y = ¢ 4+ £ where £ ~
N(0,0?) is an iid Gaussian random variable and that ¢ is drawn from the Gaussian
process on X specified by k. That is,

Y:(y17~-~7y7n) NN(O,K+0'21)

where K;; = k(z;, ;) and I is the identity matrix.
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2.2 Regression

Since Y| X ~ N(0, K + 0°I) is normal, so is the conditional distribution of test labels
giVen tl"aining and test data p(}/test ‘Y:craina Xtrain; Xtest)- We have Y:cest |Y—train7 Xtrairn
Ktest ~ N (1, X) where

H = Ktest,train(Ktrain,train + UQI)_lnrain (1)
Y= Ktest,test + 021 - Ktest,train(Ktrain,train + 021)_1Ktrain,test . (2)

Here Kirain,train 1S the covariance matrix computed on the training set Xipain =
{Z1,...,Zm}, Kiest test is the corresponding part computed on Xyest = {7, ..., 2./},
Kiest,train, Kirain,test contain the cross-terms, and Y;;ain is the vector of training labels
yi. Eq. @) contains the Schur complement arising from conditioning on a subset of
random variables.

Note that the distribution of Yiest|Yirain, Xtrain, Xtest may differ significantly from
the distribution of observed Yi,,in. In particular, there is no guarantee that any of the
moments of the conditional distribution match that of the observed data. This is the key

weakness of the model which we will address in Section[3

2.3 Model Selection

If we knew the correct k and o2, Equations (1)) and @) would be all we need for infer-
ence. In reality, the kernel k and the degree of noise o need to be adjusted. By Bayes
rule this leads to

p(}/traina 02a k|Xtrain) X p(}/train‘Xtraina 027 k)p(UQa k|Xtrain) .

Inference is then carried out either by sampling from the posterior or by maximum a
posteriori (MAP) estimation with respect to (k, o). For the purpose of this paper we
focus on the latter due to its superior computational efficiency. Lacking further knowl-
edge about the prior, one typically assumes that p(02, k| Xirain) = p(c?)p(k) factor-
izes. Typically p(k) is non-zero only for a parameterised family of kernels. For instance,
the liberty in choosing k£ might relate to the width and scaling in a Gaussian RBF kernel,
leading to parameter scaling in a fashion similar to Automatic Relevance Determination
[16]. We then need the derivatives with respect to these parameters (see Section [4.4).
This leads to the minimization of the negative log-posterior P (o2, k) :=
—10g p(Yirain, 02, k| Xirain) Which is given (up to constants) by

1 1
P(o k) =, log |K + 0?1 —logp(o?) — logp(k) + 2yT(K +o' D)y )

Here we skipped the “train” subscripts on K and Y for a more compact notation.
Using tr to denote the trace, the derivatives of P with respect to 0 and k are readily
obtained via:

9,2P :i tr(K + o2I) ! — 9,2 log p(0?) — ; (K + %)~y
0P Z; tr(K +0*I) 7 [0 K] — Oy log p(k) @

1
- 2yT(K + 0 I) O K] (K 4+ o*T) "ty .
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Fig. 1. Left: unrestricted prior, e.g., p(c?, k), with contour lines indicating equal prior probability;
Right: effective prior as restricted by Q. to a sub-domain of (o2, k) which satisfy the marginal
constraints on the test set. The order of hypotheses within the feasible set remains unchanged
by the intersection with Q.. However, the normalization changes due to the restriction of the
domain.

Minimization is achieved, e.g., by gradient descent. In terms of computation, the key
cost is to deal with the inverse of (K + o°I).

3 Transduction and Empirical Bayes

When viewing the negative log-posterior (3) it is obvious that X5 does not enter
the discussion. This is perfectly reasonable provided that our prior on k and o2 is well
specified. In reality, however, we can rarely be sure that the prior is sufficiently accurate.
We address this issue in the following by a semi-empirical construction of the prior on
o2, k.

3.1 Restricting the Prior

We begin with a prior p(k,o?) which denotes our (so far observation independent)
knowledge of the estimation problem. We would like to modify the prior such that it
only contains values of k£ and 02 such that Yiest |Yirain, X has a distribution similar to
that of Yi ain. In particular, we consider distributions from the family O, which on the
test set Yiest has mean and variance close to the observed values on the training set:

Qe = {q| | Eviceing [6(y)] — ill < €} . &)

Here ¢(y) = (y,—,y?) are the sufficient statistics of the normal distribution and
g=m"! Yot ¢(y;) is the empirical statistics of y on the training set Yy ain.

We could now simply perform inference by minimizing P(c2, k) subject to the
constraint that p(Yiest|Yirain, X, 02, k) € Q. (See Figure [l for an example). How-
ever, there is no guarantee that any (02, k) satisfies the constraint on the distribution.
Hence we relax the conditions in the following sections to also include distributions
close to Q..
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3.2 Unconstrained Minimization

Denote by D(pl|q) the Kullback-Leibler (KL) divergence between two distributions

(z)
(z)

and denote by D(Q||p) := infyeco D(¢||p) the KL-divergence between a distribution p
and a subset of distributions Q. Since the KL divergence vanishes only for equivalent
distributions, D(Q||p) = 0 is equivalent to p € Q. Moreover D(Q||p) > 0 for all p.

This provides us with a barrier function to ensure that p € Q whenever possible and
a measure for the distance between Q and some p ¢ Q. Instead of minimizing P(o2, k)
we modify the negative log-likelihood and minimize now:

P(027k)+)\D(Q||p(}/test‘yjcraimX7 UQak)) ’ (6)

where \ > 0. For \ — oo we obtain the optimization problem with hard constraints on
(02, k). For A\ — 0 we recover the unrestricted problem.

Similar to variational methods the objective function can be rewritten in terms of
the entropy of the closest distribution in Q@ and an effective likelihood term in p. The
problem of minimising (€) can then be rewritten as a joint minimization over (o2, k, q)
as

dgq(x)

X
Dlalp) = [ 1057}

inf P(J27 k) + AD(Q(chest)||p(Y—test‘Y:crain; X; 0'2; k)) .
q€Q,02 )k

Decomposing the KL-divergence we have

inf - logp(}/train‘Xtrainv 027 k) - 10gp(0’2) - IOg p(k)
q€Q,02 .k (7)
- )‘EYtes:Nq [logp(yjcestnftrainv Xa 027 k)] - AH(Q)

where H denotes the entropy (H (q) = — [log q(x)dq(z)).

This decomposition closely resembles variational methods for estimation, where an
intractable model is replaced by a tractable approximation, see e.g., [17].

The joint minimization problem over ¢ and (02, k) can be solved, e.g., by subspace
descent. The advantage of this approach is that while the objective function (@) is jointly
nonconvex in the parameters, the resulting subproblems may be more amenable to min-
imization. For instance, the problem of finding a minimizer in ¢ for fixed (02, k) can be
recast as a convex problem for certain Q. We have the following algorithm:

1. For fixed ¢ minimize
- IOg p(Y:craina 027 k|Xtrain) - )‘EYtes:NL] [lOg p(Y:cest |Krain7 X, 027 k)] (8)

with respect to (02, k).
2. For fixed (02, k) minimize

D(q(Y;;est) ||p(}/test |Y;;raina Xa 027 k))

with respect to g, where g € Q.

In the following section we discuss both steps in greater detail for the case of regression.
We begin with Step 2.
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4 Minimizing the Effective Posterior

4.1 A Duality Theorem for g

Recall the definition of Q. as in (3). There we required that ¢ evaluated on Yis has
approximate mean fi with regard to the statistic ¢(y). The following theorem, which
follows immediately from [18]] is a generalization of the well-known duality between
maximum likelihood estimation and entropy maximization with moment matching con-
straints. It states the connection between maximum a posteriori estimation and entropy
maximization with approximate moment matching constraints,

Theorem 1 (Approximate KL Minimization). Denote by X a domain and let p, q be
distributions on X. Moreover, let $(x) : X — B be a map from X to a Banach space
B. Then for any € > 0 the problem

min D(qllp) subject 10 ||Eang [¢(2)] = all < €

has the solution

q0(x) = p(z) exp ((¢(z), 0) — g(0))
where 0 is an element of the dual space of B. Here g(6) ensures that q(x) is normalized
to 1. Moreover 0 is found as solution of the maximum a posteriori estimation problem

min g(0) — {(a,0) + 0] - ©)

Equivalently for every feasible € there exists some A > 0 such that the minimum of
9(0) — (i, 0) + 4 16]|° minimizes ([©).

The quadratic formulation in ||6]|* is preferable in terms of optimization as it is always
feasible. In terms of the transductive regression estimation problem this means that

q(Y:cest) = p(Kest‘}/:crainu Xu 027 k) €xp (<¢(Y:cest)u 9> - 9(9))

where ¢(Yiest) = ., Zil (y; , %yf) for m/’ test instances. Since p is a normal distri-
bution and ¢(Y}est ) only contains linear and quadratic terms in Yiegt, the overall distri-
bution g(Yiest) will also be normal. This greatly simplifies the calculation of g(6) and

its derivatives:

999(0) = E [¢(Yiest)] and 839(9) = Cov [¢(Yiest)] -

4.2 Minimizing with Respect to g

Let 1 denote the all one vector and I the identity matrix. The linear and quadratic
terms in — log ¢(Yiest), as a function of A\ and the mean and variance (¢ and X) of
P(Yiest|Yirain, X, 02, k) are then given by

1
2

which corresponds to a normal distribution with variance and mean

1
(Y;;est - ,U)Tz_l(y;;est - /,[,) - ellTY;est + 292 ||}/test||2
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Tol=X"1 46,0
o= (271 +6D) (X +611)
The latter can be seen by some tedious but very straightforward algebra matching up

linear and quadratic terms in the expansion in Yieg. It also allows us to compute the
expected value of ¢(Yiest) as follows:

1 1
E [¢1 (Yiest)] Zm,lTuq = m,lT(E_1 +6:,0) (X +6,1)

E [(152(Ytest)] = !

2
e D)

1
(214 6,1) ' + I [[CoRER S R R 1)) .

/tr
m

Putting everything together we obtain the conditions for finding the optimal value of ¢
in transductive regression:

00 [~ loga() + 4 10)°] =0 = Elo(View) —p+ 40 =0 (10)

Moreover, the solution is unique and the problem can be solved by the Newton method
or conjugate gradient descent as the Jacobian of the LHS of (I0) is positive definite.

4.3 Minimizing with Respect to p

We now describe how to perform the optimization in Step 1. With regard to the min-
imization in p we already accomplished a significant part of the calculations in ().
What remains is to deal with the expected log-likelihood of p(Yiest|Yirain, X, 02, k)
with respect to q. We use the following simple lemma:

Lemma 1. Let X', ¥, = 0 be covariance matrices in R"*" and let u, 1y, € R™ be
corresponding means. In this case

Eon(ug, sy (@ =) T2 o —p)] = te 712 + (g — 1) "2 (g — 1) -

Proof (Sketch only). By the trace formula E [z " X ~'z| = trE [zz"] ¥, Expand-
ing (x — p) = (z — pq) + (pq — p) and direct calculation yields the desired result.

Consequently we can expand the expected log-likelihood (up to constants) as
T(Uza k, Q) = EYtestNN(uq,Eq) lng(}/testD/;;raim X7 k‘, 02)

;(uq =) X (g — 1)

where p1, X are given by (1)) and @) respectively. The last step is to take derivatives with
respect to those parameters in analogy to P. By standard matrix calculus [[19] we obtain

1 1
=, log |X| + 5 tr 22, +

T (c% k,q) :; tr 271 [0k 2] — ; tr 2 [0p 2] XY,

+ (1= pag) "X (O] — ;(uq — ) ET O X) Z (g — ) -
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The terms arising from 0,27 are analogous. Finally, the derivatives of X' and p with
respect to k and o2 are given by

802/~L = - Ktest,train(Ktrain,train + 021)_2Krain
816/1 = Ktest,train (Ktrain,train + 0'2]:) -1 Ok Ktrain,train (Ktrain,train + 0'21) -1 Yirain
8022 =1- Ktest,train(Ktrain,train + 021)_2Ktrain,test
81432 :8143 Ktest,test - 814: Ktest,train(Ktrain,train + 0—21)71Ktrain,test
- Ktest,train (Ktrain,train + 0'21) N 18thrain,test
+ Ktest,train (Ktrain,train + 021) -1
+ 8k](train,train(I(train,train + 0'21)71Ktrain,test .
Finally, the derivatives of the restricted log-posterior given in (8] are given by summing

over the terms P (02, k) + A7 (02, k, q). Standard optimization methods for choosing
adequate parameters in k and o2 can subsequently be applied to the problem.

4.4 Application to Automatic Relevance Determination

ARD [16]] is a means of determining the scale of random variables. This gives us a
principled method for choosing the appropriate parameters k and o2. In the context of
Gaussian processes, we can parameterize the kernel k by

ko(x,z’) := k(Oz,0z")

where O is a diagonal matrix which ensures proper scaling of z in different coordi-
nates. For Gaussian RBF kernels, we have k(x, ') = exp (— |O(z — x’)||2>, whose

derivative is given by
doko(v,a') = = 2((w1 = 21)%O1,..., (0 — 21,20,) T exp (O — )| .
A suitable choice of a prior on the coefficients ©; € R can ensure that many of them

will vanish. In particular we choose a factorizing gamma prior, for which

n

—logp(@) = Z —alog ©; + bO; + const .

i=1

Similarly we choose a gamma prior for the additive noise 0.

5 Experimental Results

5.1 Regression Datasets

Dataset Facts. For experimental evaluation we decided to use the same datasets and
preprocesing as in [20]. There, 23 regression datasets from UCI [21] and the R [22]
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Fig. 2. Mean root mean squared errors of the different approaches on all used datasets. Note the
different scaling of the figures

packagesmlbench, quantreg, alr3 and MASS were pickecﬂ No datasets with
missing values were used. In some cases where the target variable was not obvious,
it was selected arbitrarily. The sample sizes vary from m = 43 to m = 1375 and
the lengths of input vectors vary from n = 1 to n = 60. Finally, some datasets were
standardized to have zero mean and unit variance (the datasets were also used in this
form in [20]).

Overview of Results. We compared transductive and inductive GP regression in 10-
fold cross-validations. For inductive GP regression the kernel bandwidth and the ad-
ditive noise level are chosen via cross validation within the training sample as this is
the common practice in many other papers. For transductive GP regression A and \ are
chosen via cross validation within the training sample. The automatic relevance deter-
mination parameters are held constant throughout all experiments (¢ = 1,b = 0.5).
To compare the two models we used the root mean squared error over 10-fold cross
validations.

The results are illustrated in Figure @] and full details are given in Table[Il The last
three columns are the mean = standard deviation of the root mean square errors. In the
large majority of the test cases, the transductive GP regression outperforms the inductive
GP regression in terms of root mean square error (20 wins/ 3 losses). However, not in
all cases the difference is significant.

Statistical Comparison. To verify that transductive Gaussian processes with auto-
matic model selection (AMS) significantly outperform inductive Gaussian processes
(with AMS) over all datasets, we need to perform a proper statistical test with the null
hypothesis that the algorithms perform equally well. As suggested recently [23] we
used the Wilcoxon signed ranks test.

The Wilcoxon signed ranks test is a nonparametric test to detect shifts in populations
given a number of paired samples. The underlying idea is that under the null hypothe-
sis the distribution of differences between the two populations is symmetric about 0. It
proceeds as follows: (i) compute the differences between the pairs, (¢7) determine the
ranking of the absolute differences, and (¢2¢) sum over all ranks with positive and nega-
tive difference to obtain W, and W_, respectively. The null hypothesis can be rejected

! Descriptions are available at http://cran.r-project.org/src/contrib/PACK AGES .html
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Table 1. Dataset facts (number of instances, number of attributes, class attribute, dropped at-
tributes, standardized (Yes, No)) and regression results (root mean squared error of inductive,
inductive Gaussian processes with AMS, and transductive Gaussian processes with AMS, re-
spectively). Bold numbers denote smaller error.

Data set #Inst #Att Class Dropped Std Inductive  Ind. (AMS) Transd (AMS)
diabetes 43 3 c peptide - N 0.64 +0.66 0.64 £ 0.66 0.66 &+ 0.45

triazines 186 61 activity - N 0.10+0.12 0.10+£0.10 0.09 +0.17
pyrimidines 74 28 activity - N 0.10+0.09 0.09 £ 0.05 0.09 +0.05
BigMac2003 69 10 BigMac City Y 1.08+0.95 0.73+0.85 0.53 +0.55
UN3 125 7 Purban Locality Y 0.84 £0.44 0.724+0.42 0.61 £+ 0.38
topo 52 3 z - Y 149+2.75 0.74+1.05 0.65+ 0.40
mcycle 133 2 accel - Y 1234038 0.97+0.20 0.9 £0.25
CobarOre 38 3 z - Y 147+132 1.22+0.92 1.14+0.61
highway 39 12 Rate - Y 1.00+0.84 0.93+0.68 0.84 +0.66
sniffer 125 5 Y - Y 0.754+0.37 0.67£0.33 0.58 +0.31
caution 100 3 y - Y 1.03+0.86 0.92+0.54 0.91+0.55
gilgais 365 9 e80 - Y 0.854+0.62 0.79+0.6 0.73+0.55
ftcollinssnow 93 2 Late YRI Y 231+345 1.204+0.95 0.92 +0.51
crabs 200 7 CcwW index Y 0.344+0.26 0.29+0.21 0.29+0.21
BostonHousing 506 14  medv - Y 047+0.35 0.42+0.29 0.39 +0.27
engel 235 2 y - Y 2.18+4.05 0.81 £0.75 0.58 +0.50
heights 1375 2 Dheight - Y 0.10+0.100.10 £ 0.10 0.10 + 0.09
snowgeese 45 5  photo - Y 053+044 0.49+0.43 0.44 +0.49
ufc 372 5 Height - Y 0.63+0.39 0.63+£0.31 0.63 +0.31
birthwt 189 8 bwt ftv,low Y 0.38+£0.55 0.25+0.51 0.19 £+ 0.22
GAGurine 314 2 GAG - Y 0.94+0.72 0.81 +0.79 0.77 +0.82
geyser 299 2 waiting - Y 0.96 +£0.61 0.93+£0.65 0.89 +0.48
cpus 209 8 estperf name Y 0.40£0.46 0.48 +0.78 0.48 £0.78

if W (or min(W,, W_), respectively) is located in the tail of the null distribution
which has sufficiently small probability.

The critical value of the one-sided Wilcoxon signed ranks test for 23 samples on a
0.5% significance level is 55. On this significance level we can reject the null hypotheses.

6 Outlook and Future Work

We presented a new transductive GP regression method, where the prior distribution
on model selection parameters is modified for approximate moment matching between
training and test set. Experimental results show the competitiveness of our approach.
Note that significant improvements were achieved in cases where the size of the unla-
belled data is only 1/10-th of the training data. We expect even larger improvements
over inductive GP when more unlabelled data is used. We also would like to emphasize
that this method is in fact orthogonal to other transductive methods, eg. one can use a
semi-supervised kernel function as well as the moment matching constraints.

It is important to note the generality of this method. The approximate moment match-
ing constraints have been applied to classification problems and can easily be extend to



316 Q.V.Leetal.

structural learning: All we need to do is impose the constraints that the expectations of
singleton labels as well as the expectations of the neighboring label clusters over the
test set should approximately match the statistics of the training data. That is, we im-
pose moment matching conditions on the class marginals. Note that if we have a large
amount of data at our disposition, imposing only moment constraints may be wasteful.
That is, we have information not only about the class marginals globally but also /o-
cally. This leads to an interesting crossover of inductive and transductive estimation,
which is subject of current research.

Finally note the similarity of our setup to empirical Bayes estimation insofar as we
adjust the prior over the hypothesis space after seeing the data. While this clearly runs
counter to proper Bayesian procedure, it still produces convincingly better results. It
would be interesting to see whether it is possible to obtain statistical confidence bounds
for our estimator: From [[18] it follows immediately that the expected log-likelihood is
well concentrated. This, however, is not our aim — we would like to obtain bounds that
are better than the conventional uniform convergence bounds taking advantage of the
fact that we have additional test data.

The transductive Gaussian process regression with automatic relevance determina-
tion can help us to determine which feature is important in regression. This information
can be useful in many fields, for example in bio-informatics, where the knowledge of
which genes play important roles is valuable.
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