Chapter 1

Introduction

The need to automatically decide whether, and/or to what extent, two objects are
similar arises in many areas of computer science. Sometimes it is explicit, for in-
stance in nearest neighbor methods that rely on finding training instances similar
to the input, or in information retrieval applications. In other cases, for instance in
probabilistic models that use dissimilarity computations to derive model parameters,
this need is implicit. The notion of similarity judgment has been also in the focus of a
large body of research in cognitive science. It is known that people can perceive and
judge similarity at different cognitive levels, and that the semantics of such judgments
may depend on the task.

The basic idea explored in this thesis is that the notion of task-specific visual
similarity can be, and should be, learned from examples of what is to be considered
similar for a given task. Specifically, we develop an new approach that learns an
embedding of the data into a metric space where a (possibly weighted) Hamming
distance is highly faithful to the target similarity. A crucial practical advantage of
this approach is that a search for examples similar to a given query is reduced to
a standard search in the metric embedding space and thus may be done extremely
quickly, leveraging an arsenal of randomized algorithms developed for that purpose. In
some of the applications reported here we use our embedding approach in conjunction
with locality sensitive hashing, and achieve state-of-the-art performance in sublinear
time.

We develop a family of algorithms for learning such an embedding. The algo-
rithms offer a trade-off between simplicity and speed of learning on the one hand
and accuracy and flexibility of the learned similarity concept on the other hand. We
then describe two applications of our similarity learning approach in computer vision:
for a regression task of estimating articulated human pose from images and videos,
and for a classification task of matching image regions by visual similarity. To our
knowledge, this is the first example-based solution to these problems that affords a
feasible implementation.

In the context of regression, the novelty of our approach is that it relies on learning
an embedding that directly reflects similarity in the target space. We can use this
embedding to retrieve training examples in which the target function with high prob-
ability has values similar to the value on the input point. We combine the embedding

17

with the search algorithm using randomized hashing and with a clustering step that
allows for multi-modal estimation.

This Introduction is organized as follows. Section 1.1 gives defines more formally
the task we are addressing. Section 1.2 outlines the basic ideas in our approach to
learning similarity. The computer vision applications of this approach are briefly de-
scribed in Section 1.3. Finally, Section 1.4 describes the organization of the remainder
of the thesis.

1.1 Modeling equivalence

The central learning problem addressed in this thesis can be formulated as follows.
Let X denote the data space in which the examples are represented. We will define
an equivalence similarity concept as a binary relation S(x,y) — =1, that specifies
whether two objects x € X and y € X are similar (+1) or not (-1). We will assume,
unless noted otherwise, that this relation is reflexive, i.e. S(x,x) = +1, and symmet-
ric, i.e. §(x,y) = S(y,x). However we will not require S to be transitive, and so it
will not necessarily induce equivalence classes on X.

We develop an approach to learning a model of such similarity relation from
examples of pairs that would be labeled similar, and ones that would be labeled
dissimilar, by §. We also show how, under certain assumptions, such learning can be
done in a scenario in which only positive examples are provided, in addition to some
unlabeled data.

Our objective in learning similarity is dual:

e To develop a similarity classifier, that is, to build an estimator that given a
novel pair of objects in X’ predicts, as accurately as possible, the label § would
have assigned to it.

e To provide framework for a very efficient similarity search. Given a large
database x1,...,xy of examples and a query xqg we would like to have a method
for retrieving examples in the database that are similar (with respect to S) to
the query, without having to apply the similarity classifier to every possible pair
(Xo, Xi) .

The embedding approach developed in this thesis allows us to achieve both of
these goals in a single learning framework.

1.1.1 Other notions of similarity

Similarity can be defined at two additional levels of “refinement”, which we do not
address here. However we describe these notions of similarity below in order to clarify
the distinction from the problem outlined above.

Ranking One can define a relative similarity: for two pairs of examples, x,y and
z, w one can determine whether or not S(x,y) < §(z, w). In principle such similarity
model defines a binary classification problem on pairs of pairs of examples.

18

Distance At the most refined level, S could produce a non-negative real number
for any pair of examples; the smaller this number the more similar the two examples
are. Such a regression mapping X? — R, corresponds to the standard notion of a
distance between pairs. The distance values of course induce a ranking relation, as
well. It may also be possible to obtain a consistent set of distances from ranking, by
methods like multidimensional scaling (Section 2.3.3) but in general the information
available at this level is more rich than the other two.

In this thesis, unless otherwise noted the term “similarity” will refer to equivalence.
At the end of the thesis we will discuss how the approach we develop could be extended
to the ranking notion of similarity. As for learning a real-valued, distance notion of
similarity, we will not pursue it here.

1.1.2 Example-based methods

In some cases, the goal of an application is explicitly to predict the similarity judgment
on two examples x,y € X', under a particular similarity S. This is a classification
problem over the space of pairs X x X. However, very often in machine learning the
ability to automatically judge similarity of example pairs is important not in itself,
but as part of an example-based method.

The distinction between model-based and example-based classification is often
loose; here we attempt to frame it in terms of the manner in which training examples
are used to predict the label of a new input.

Model-based methods use the training examples to build a model—of the class or of
the target function. More often than not the model is parametric. A common example
is to fit a parametric model of probability density to examples from each class; the
very popular family of classification methods based on principal component analysis
belongs to this kind. Sometimes it is non-parametric, for instance modeling the class-
conditional density with a kernel estimate. The main defining characteristic of a
model-based classification is that the input is not explicitly matched with (compared
to) individual training examples but rather matched to the model. This is true
whether the original training examples are kept around, like in the case of kernel-based
non-parametric model, or are discarded after the model is constructed as in principal
component analysis, or a mix of the two is used, as in a support vector machine
(SVM) [103], where some of the training examples, namely the support vectors, are
retained in addition to a set of parameters learned from the entire training set.

In contrast, in example-based methods classification or regression is based explic-
itly on comparing the input to individual training examples. Widely used example-
based methods include nearest-neighbor classification and locally-weighted regression.
A generic description of such a method is:

1. Store the training (sometimes called reference) data X = {xy,...,x,} and the
associated labels ¢1, ..., ¢,.
2. Given a query Xo, find examples x;,,...,X;, in X that are similar to xy.

3. Infer the label of the query ¢y from (x;,,4;,), ..., (xi,,4,)-

19

The central computational task in the above description is similarity search:
Given a query xo € X and a set of examples X = {x1,...,%,}, find x; such that
S(x0,%;) = +1. Technically, this may be equivalent to applying a similarity classifier
on n pairs (Xg,X;), ¢ = 1,...,n. However, from a practical standpoint such a solution
is unacceptable for large datasets, even with a relatively simple classifier. In order to
make search feasible, it should be possible to complete in time sublinear in n.

We assume that no analytic expression exists for the “true” similarity concept S,
or that no access to such an expression is given to us. Thus we need to construct a
model S of similarity, which will be used to predict the values of S.

1.1.3 Why learn similarity?

Before we discuss the details of our approach to learning similarity from data, we
briefly discuss some alternatives here, and a more detailed discussion is found in
Chapter 2.

A reasonable approach may be to use a distance as a proxy for the desired simi-
larity, namely,

(1.1)

So(x, y) +1 if D(x,y) <R,
X,y) =
pusy -1 ifD(x,y) > R.

The choice of the distance D, and to some extent of the threshold R, may have
critical impact on the success of such a model. The most commonly used distances
are the L, metrics, in particular the L; (or Manhattan) and the Lo (Euclidean)
distances. These distances account for a vast majority of example-based methods
proposed in computer vision when the representation space X is a vector space of
fixed dimension.! When the representation does not allow a meaningful application
of L,, the similarity is typically measured in one of two ways. One is to embed the
data into a metric space and proceed using an L, distance; the other is to apply
a distance measure suitable for X'. For instance, when examples are sets of points
in a vector space, a common distance to use is the Hausdorff distance [45] or the
earth mover’s distance [55]. Often one uses an embedding of X’ into another, usually
higher-dimensional space, in which an L, metric approximates the complex distance
in the original space [5, 55].

However, it is usually possible to provide examples of similarity values. The
source of such examples depends on the circumstances in which similarity modeling is
required. In some cases, similarity values for example pairs may be provided directly,
either by manual labeling or via an automated data generation or gathering process.
In colloquial terms, this means that a human has a particular concept of similarity
in mind, such as “these two image patches look similar”, or “these two people have a
similar body pose”, that allows him/her to serve as an oracle and provide values of
S(x,y) for some pairs (x,y) € X2 These values are considered the “ground truth”
and the goal of the similarity modeler is to construct an estimate, S , that optimizes

!The distances under L; and Ly will of course differ, however the ranking, and consequently the
set of nearest neighbors, are typically very similar; see, e.g., [52] for a discussion.

20

the chosen measure of agreement with §. In other words, the goal is to “uncover”
the similarity judgment S used to assign the training labels.

On the other hand, in the context of example-based methods similarity between
objects in X is in effect a “latent concept”. Each training example x in X is associated
with a label ¢(x) in a target space). Usually, a well-defined similarity Sy exists over
Y and can usually be computed analytically. For instance, in a classification scenario
Y is the finite set of class labels, and two labels are similar if they are identical.
In a regression setting) contains the values of the target function, and similarity
may be defined by two values falling within a certain distance from each other. We
suggest a natural protocol for defining a similarity over X?: two examples in X are
considered to be similar under § if their labels are similar under Sy. This provides us
with a method for inferring values of S from the labels. The basic challenge remains
unchanged: to be able to predict S(x,y) without access to the labels ¢(x), ¢(y) and
thus to the ground truth similarity.

A crucial property of similarity is that it can be task-specific: the same two ex-
amples may be judged similar for one purpose and dissimilar for another. This is
illustrated by the following “toy” example. Consider a set of 2D points, with two
different notions of similarity illustrated in Figure 1-1 (analyzed in more detail in
Chapter 3.) Under the first similarity (top row), two points are similar if their Eu-
clidean norms are close (within a given threshold). Under the second, two points
are similar if the angles in their polar coordinates (modulo 7) are close. Clearly,
Euclidean norms, Manhattan or Mahalanobis distances are not adequate here. The
proposed algorithm uses a few hundred examples of pairs similar under the relevant
similarity and produces an embedding which recovers the target concept quite well,
as shown on the right.

1.2 Learning embeddings that reflect similarity

In the most basic form, our approach can be summarized as follows. We construct
an embedding of X into an M-dimensional space H, each dimension m of which is
given by a separate function h,,:

H:xeX — [aghi(x),...,aphy(x)], hm(x) € {0,1}. (1.2)

The value of o, > 0 depends on the specific algorithm, but in all algorithms the
h., are chosen in such a way that the L, distance

1H() = HOI = Y lamhm(x) = amhin(y)|-

reflect the underlying similarity. That is, the lower the distance ||H (x), H(y)||, the
higher the certainty of S(x,y) = +1. Thus, we follow the paradigm of distance as
proxy for similarity (1.1), however the representation, the distance and the threshold
R are explicitly chosen with the objective of maximizing the prediction accuracy.

21

Data
Test

True similaity

L

O Hamming
B

Ok -

Data

Test

+
o True sirmilarity
L

] Harrning

Figure 1-1: Illustration of task-specific similarity modeling on a toy 2D data set.
Left: ground truth showing, for one query (cross), examples similar to it (diamonds).
Examples found by the BoostPro (Chapter 3) algorithm are shown by squares. Right:
similarity regions induced by the query and the embedding learned with BoostPro
(200 bits), for a particular distance. Top row: norm similarity, bottom row: angle
similarity.

22

1.2.1 Motivation: hashing and boosting

This approach is inspired by, and to a large extent has evolved from ideas developed
in the last decade in two areas of research: randomized search algorithms in computa-
tional geometry and ensemble methods in machine learning. Here we briefly describe
them, and a more detailed survey can be found in Chapters 2 and 3.

Locality sensitive hashing (LSH) The LSH [65, 52, 31] is a scheme for approxi-
mate similarity search under the L, metric for p € [0, 2]. It works by indexing the data
in a set of [hash tables with independently constructed randomized hash functions,
each using a key of k bits. Each bit in the hashing key is computed by projecting
the data onto a random vector and thresholding the value. With a suitable setting
of parameters [and k, this hashing scheme finds, for a value R, a e-R neighbor of x,
i.e., an example x such that ||xg — x|| < (1 +€)R. Its lookup time is O (n!/(+9),
and arbitrarily high probability of success can be achieved. The building block of
LSH which provides this guarantee is the notion of a locality sensitive hash function,
under which the probability of collision is related to the distance in X. When the L,
metric over X is used as a proxy for the underlying similarity S, the LSH achieves
our goal as formulated: the union of distinct bits used in the hash keys defines an
embedding in which L; distance (in this case equivalent to the Hamming distance)
reflects S. A natural question, then, is how to extend the LSH framework to reflect
the distance in the unknown embedding space. Our solution is, essentially, to learn
the locality-sensitive bits and let the bits define the embedding.

Boosting The idea of boosting [99, 23] is to create an ensemble classifier (or regres-
sor) by greedily collecting simple classifiers that improve the ensemble performance.
Each simple classifier only has to be better than chance, hence it is often referred
to as a “weak” classifier. A number of variants of boosting have been published so
far; in Chapter 3 we review the specific boosting algorithms relevant to our work.
The general strategy shared by boosting methods is to assign weights to the training
examples and manipulate these weights in order to steer the iterative greedy selection
process towards improving the desired properties of the ensemble.

The learning approach in this thesis was inspired by these ideas, and has adapted
them for the purpose of constructing a similarity-reflecting embedding. The algo-
rithms outlined below and described in detail in Chapter 3. The order in which they
are presented corresponds to the evolution of the underlying ideas and to trading off
simplicity of learning for representational power of the resulting embeddings.

1.2.2 Similarity sensitive coding

The first algorithm? is essentially a modification of the original LSH approach in
which the hashing bits correspond to axis-parallel decision stumps. The operating
assumption behind it is that a reasonable approximation to & may be obtained by
calculating the L; distance in the data space X, when the following “corrections”:

2Published in [105].

23

1. Some dimensions of X may be irrelevant for determining §. These dimensions
serve as noise when distance is computed, and are better ignored.

2. For a given dimension, some thresholds (decision stumps) are much more ef-
fective (i.e. similarity-sensitive-see Section 2.4.2) than others. Using these
thresholds in constructing LSH keys will optimize the properties of the hashing
scheme for a given size of the data structure (and thus for a given lookup time.)

3. The determination of the dimensions and thresholds described above is to be
guided by the available training data in the form of similar and dissimilar pairs of
points in X'. The training true positive (TP) rate correspond to the percentage
of similar pairs in which both examples (projected on the dimension at hand)
fall on the same side of the threshold. The false positive (FP) rate is evaluated
similarly by looking at the dissimilar pairs.

This leads to the algorithm called similarity sensitive coding (SSC), first presented
in [105] under the name of PSH (parameter-sensitive hashing). For each dimension
of X, SSC evaluates the thresholds and selects the ones with acceptable combination
of TP and FP rate. The criteria of acceptability depend on the precision/recall rates
appropriate for the application at hand, and are formulated as an upper bound on the
FP and a lower bound on the TP rates. The data are then indexed by LSH, which
uses only the selected stumps as hash key bits. This is equivalent to embedding & into
a binary space

HC(x) = [h%sc(x), . ,h?wsc(x)} , (1.3)

where each bit h35¢(x) is obtained by quantizing a single dimension 4, in X into a
single bit by thresholding:

1 ifa, < T,

e - |

1.2.3 Boosting the embedding bits

Learning of the decision stumps in SSC is straightforward, and the algorithm has
produced good results in the pose estimation domain [105, 35]. However, SSC leaves
room for a major improvement: it ignores dependencies between the dimensions of
X. The second algorithm of Chapter 3 addresses these issues and employs a boost-
ing algorithm (AdaBoost) which takes the dependencies into account. The boosting
algorithm yields an ensemble classifier,

CAP(x,y) =sgn | Y am (hAP(x) — 1/2) (hhP(y) — 1/2) (1.4)

where the single bit functions hAP are of the same form as h3°C. The resulting
embedding is into a weighted binary space

HAB(x) = [alh?B,...,aMhﬁB}. (1.5)

24

Interestingly, the L; (Hamming) distance in this space between H*P(x) and
H*B(y) is proportional to the margin of the AdaBoost classifier,

M=

0 (W70~ 1/2) (AP (y) ~ 1/2).

m=1
In practice, this algorithms may outperform SSC for a number of reasons:

e The embedding is less redundant and more directly optimized for the underlying
similarity prediction task.

e The weights produced by AdaBoost allow for an additional “tuning” of the
embedding.

While in principle this is a straightforward application of AdaBoost, a number of
interesting practical problems arise when the algorithm is applied to a large amount of
data. In particular, under the assumption mentioned in Section 2.1.4 that similarity
is a “rare event”, the class distribution is very unbalanced. We discuss this issue in
Chapter 3.

1.2.4 BoostPro: boosting optimized projections

The final algorithm of Chapter 3, called BoostPro, further advances our approach
towards making the embedding more flexible. We leave the realm of axis-parallel
decision stumps, and instead propose to use arbitrary projections of the data. By a
projection we mean any function f : X — R; in all the experiments described in this
thesis we have used polynomial projections,

d
fx) =Y 0, pref{l2,..}, i e{l....dim(X)}.
j=1

In contrast to the algorithm outlined in the previous section (where the weak learn-
ers only select the threshold), BoostPro uses a gradient-based optimization procedure
in the weak learners to improve projection coefficients as well as thresholds, given the
current ensemble and the weights on the training data. Furthermore, we introduce
a modification of AdaBoost algorithm for the special case of learning similarity, in
which learning is done from positive examples only.

Figure 1-2 provides a cartoon illustration of the forms of embedding attainable
with each of the algorithms.

1.2.5 Relationship to other similarity learning methods

In Chapter 2 we discuss in some detail the significant body of literature devoted to
related topics. Here we attempt to broadly categorize the prior work and emphasize
its main differences from the learning approach developed in this thesis.

25

110 diO Cio 0 0'c
IR Ao 0-)
- 9 2 P
S S - RN @ - Sopegyie b s @
0 . . .
777777777777777777777777777 (0 (D)
1 ae o
')]
1 1 (‘3)
@ 3 @ O
(a) SSC (b) Boosted SSC (¢) BoosTPRrO

Figure 1-2: Illustration of embeddings obtained with the learning algorithms. Dotted
lines show 0/1 boundaries for each bit. Letters correspond to weights, numbers in
parenthesis to the order of the bits. Shown in the box is the embedding of the query
point (circle). In (c), the case of linear projections is illustrated; for polynomial
projections of higher order the boundaries would be nonlinear.

Metric learning Much work has been done on learning a metric D on X that
is optimized for the use in a particular learning machine, typically a NN classifier.
The requirement that the distance be a metric (including transitivity and compliance
with triangle inequality) stands as a major difference with our approach. Further-
more, typically the learned metric is constrained to a particular parametric form,
usually described by a quadratic form [118, 53]. Thus the class of similarity con-
cepts attainable by these methods is significantly more limited in comparison to our
embeddings.

Optimal distance learning For certain classification tasks there have been pro-
posed algorithms that learn a distance (as a measure of dissimilarity) which is not nec-
essarily a metric, optimized for a particular task—classification or clustering. Among
recent work in this direction, [79] and [60, 61] are the closest in spirit to ours. How-
ever, the transitivity requirement is retained in these approaches, and it is not clear
how to extend them effectively beyond problems with finite label sets.

Manifold learning Many algorithms have been proposed for learning a low-dimensional
structure in data, under the assumption that the data lie on a (possible non-linear)
manifold: multidimensional scaling (MDS) [27], Isomap [112], local linear embed-
ding [96] and others (see [12] for a unifying perspective on these and other manifold
learning algorithms.) These algorithms usually obtain an embedding of the training
data by manipulating the eigenvectors of the pairwise distance matrix. A related fam-
ily of methods deals with embedding a graph, whose vertices represent examples and
edges are weighted by (dis)similarity, in a space where the similarities are preserved.

In contrast to the manifold learning algorithms, our approach does not make an
implicit assumption regarding structure in the data, nor does it limit the dimension-

26

ality of the embedding by the dimensionality of X.> A more important difference,
however, has to do with extending the embedding to new examples. The MDS and
related algorithms do not yield a mapping function, which could be applied to a pre-
viously unseen example. While some extensions to out-of-sample examples have been
proposed [12, 33|, they typically rely on the (Euclidean) distance in X and the ability
to find neighbors efficiently among training data—an undesirably circular dependency
in the context we are considering here.

1.3 Applications in computer vision

1.3.1 Levels of visual similarity

Visual similarity can be defined at a number of perceptual levels, which differ in the
amount of semantic complexity, the dependence on the task at hand, and the potential
stages in the visual pathway at which they may be implemented in biological vision
systems.

Low-level similarity Two image regions (patches) are considered visually similar
if they correspond to similar physical scenes. A simple example of this occurs under
small motions (translation and rotation) of a camera pointed at a given scene: in most
cases, unless there is a discontinuity in appearance due, for examples, to sharp edges,
images of the scene in subsequent frames will be similar. The framework developed
in this thesis will be applied to learn such similarity — specifically, to predict when
two image patches are transformed versions of each other. In essence, the goal is
to obtain transformation-invariant similarity on top of non-invariant representation.
The learning for this kind of similarity can occur with no human supervision: given
a set of natural images, pairs of similar patches can be extracted automatically.

Mid-level similarity On a higher perceptual level (which may be associated with
later stages in the visual pathway) visual elements are deemed similar if they share
some simple semantic property. An example of such similarity that arises in the
object categorization domain is the notion of parts - elements that are repeatable
in a particular visual category, albeit with some appearance variation. This level of
similarity may be important, in particular in an object classification architecture with
multiple feature levels.

High-level similarity On an even higher perceptual level, similarity is defined
primarily by semantics. These properties that make two objects similar are themselves
not visual, but can be inferred (by human perception) from visual information. Two
examples of such task-specific similarity that we consider in this thesis are object
category (do the two objects belong to the same category?) and articulated human

3 Although directly comparing dimensionalities is somewhat inappropriate, since our embedding
space is (possibly weighted) binary, as opposed to Euclidean X.

27

Labeled images

Database

EEE

Features
Embedding

=

binary

Figure 1-3: A cartoon of the example-based pose estimation approach. The embed-
ding is learned to reflect similarity of the entire pose.

pose estimation (is the body configuration of the two human figures similar?). Note
that in the latter case, there is an additional level of dependency on the exact task:
two poses that may be judged similar if one only needs to classify a gesture (pointing
versus raising one’s hand) would not be considered similar if the goal is to recover
the 3D location of every body joint with maximal precision.

1.3.2 Example-based pose estimation

Previous model-based approaches have shown that the task of modeling the global re-
lationship between the image and the pose is very difficult. In the proposed approach,
we instead model a simpler concept: similarity between the poses that appear in two
images. This leads to an example-based estimation algorithm: given an image, find in
a large database of images (labeled with the underlying articulated poses) examples
classified as similar to the input. This scheme, illustrated in Figure 1-3, relies on
the performance of the similarity classifier. Its high true positive (TP) rate provides
that with high probability, the unknown pose is close to the poses in the retrieved
examples. On the other hand, the low false positive (FP) rate means that not many
spurious examples will be retrieved.

A preliminary work in this direction, using SSC, has been presented in [105]. In
this thesis we present new experiments with a very large database of poses, obtained
with motion capture system, using BoostPro to learn an embedding of images that
reflects pose similarity.

28

1.3.3 Learning visual similarity of image regions

Comparing image regions is a basic task which arises in many computer vision prob-
lems: analysis of stereo, image denoising, scene recognition, object categorization etc.
Recently, methods that operate by comparing image regions have established them-
selves as state-of-the-art in some of these problems. Conceptually, there are usually
four steps in such methods that directly operate on image regions:

1. Interest operator: selecting a set of regions from the given image that are con-
sidered “interesting”. This is an attention mechanism, and a number of such
operators have been proposed. While some appear to be particularly successful
in certain cases [77, 84|, the choice of interest operator and even its utility is
still far from obvious [80, 14], and we will remain agnostic regarding this issue.

2. Descriptor The next step is to compute the representation of the selected
patches. Ideally, the representation should capture the features that are impor-
tant to the application that uses the matching method, while being invariant to
features that are unimportant. We will consider two representations, that have
been the subject of much work in the vision community: the shift-invariant
feature transform (SIFT) [77] and the sparse overcomplete codes [89].

3. Matching Once the descriptor for a region is computed, it is matched to the
descriptors of regions in the database (the training data).

4. Inference Depending on the specific task and the method at hand, the results
of the matching across the test image are combined to produce an answer.

The matching step clearly provides a natural grounds for applying our learning
approach. In Chapter 6 we describe an experiment in which we learn to match patches
obtained by transforming an image in certain ways (rotations and mild translations),
and show how whereas standard distance-based similarity models fail, the embedding
learned by our algorithm allows to detect similarity between transformed versions of
the same patches.

1.4 Thesis organization

Chapter 2 provides the background for the thesis research. It describes the prior
work in related areas, with particular emphasis on the two ideas that inspired our
learning approach: locality sensitive hashing and the boosting. Chapter 3 describes
the core machine learning contribution of the thesis—a family of algorithms that pro-
duce similarity-reflecting embeddings of the data. Armed with these algorithms we
develop example-based approaches for two computer vision domains. In Chapter 4
we describe a method for estimating articulated pose of human figure from a single
image, and in Chapter 6 a method for matching image regions based on visual simi-
larity under certain class of transformations. Chapter 7 contains a discussion of the
presented approach, and outlines the most important directions for future work.

29

30

