
Chapter 4

Articulated Pose Estimation

In this chapter we describe a new approach to estimation of articulated pose of hu-
mans from single monocular images. Our approach is example-based: it reduces the
problem of recovering the pose to a database search under L1 in the embedding space,
which is carried out extremely fast using LSH. The embedding is constructed based
on edge direction histograms, using the algorithms presented in Chapter 3. Underly-
ing this construction is the definition of a similarity concept under which two images
of people are similar if the underlying poses are, and learning an embedding that is
sensitive to that similarity.

We start with describing the problem domain and presenting our approach to it
in a nutshell in Section 4.1, and cover some related work in Section 4.2. Section 4.3
gives the details of the representation and the learning problems defined for the task.
Experimental results in two estimation tasks are described in Sections 4.4 and 4.5. In
Chapter 5 we discuss the integration of our approach to single-frame pose estimation
into a tracking framework.

4.1 The problem domain

The articulated pose estimation problem is formulated as follows. We are given an
image which contains a human body.1 We also have an articulation model–a model of
the body that describes the current 3D body configuration in terms of a set of limbs
and rotational joints that connect them into a tree structure.

This model is illustrated in Figure 4-1. The image on the left is not a photograph of
a real person but a synthetically generated image of a humanoid model obtained with
a computer graphics program Poser [29]. This image corresponds to the articulated
model in the left part of the figure. The model is shown by plotting 2D projections
of 20 key joints (crosses) and the lines connecting them, that roughly correspond to
limbs. This model may be described by 60 numbers, namely the (X, Y, Z) coordinates
of the joints (an alternative form of describing the model would be in terms of articu-
lated angles, which we will discuss later.) In fact, there are hundreds of parameters in

1The presented framework can be applied to any articulated body, but estimating pose of humans
is by far the most important task of this sort.

81



(a) Image of a body (b) Corresponding articulated model

Figure 4-1: A (synthetic) image of a person and the corresponding articulated model.
The goal of pose estimation is to derive the representation from the image on the left.
Crosses show key joints, labeled with abbreviations. l/r: left/right, t: big toe, a:
ankle, k: knee, h: hipbone, s: shoulder, e: elbow, w: wrist. Additional parts are the
base of the neck nk, the base of the skull th and the top of the skull (not labeled).

addition to these 60 numbers that affect the resulting image: the articulated pose of
additional body parts not accounted for by this coarse model, such as fingers; shape
of the actual body parts (the model, so to speak, describes the “bones”, but not the
flesh); facial expression; hair style; clothing; illumination etc. Added to that could
be the parameters that describe the scene, the objects in the background etc. The
goal of a computer graphics program like Poser is to start with these parameters
and produce a realistic image, that is, to go from the right half of Figure 4-1 to the
left half. The goal of computer vision is the opposite. In the context of articulated
pose estimation this goal is to start from the left half (the image), and recover the
relevant parameters (the right half) of the representation that “generated” the im-
age, while ignoring the nuisance parameters–all those additional aspects of the visual
scene listed above. When the image is actually synthetically generated the success
of this task is easy to measure, since we have access to the ground truth. For real
images such evaluation is more difficult. When measurements of the underlying pose
are available, for example obtained using a motion capture device at the same time
as the images are taken, this may be done in a precise fashion.2 In other cases this
may be subjective, or it may depend on the success of a “downstream” application
that relies on the estimated pose (we discuss some applications in the next section
and in Chapter 5.)

2However, special caution is required to make sure the motion capture setup, e.g. special clothing
or visible sensors, is not used by the estimation algorithm to “cheat”.

82



4.2 Background on pose estimation

There exists a large body of literature on the estimation of the pose of articulated
bodies. We only focus here on work most related to our approach. It should also
be noted that much more attention has been given to the task of articulated tracking
of humans: recovering the sequences of articulated poses from a video showing a
moving person. This task is usually approached in a qualitatively different way from
single-frame pose estimation. In particular, tracking algorithms (with almost no
exceptions) rely on the assumption of manual initialization. While the tracking setup
is in some ways more challenging than the single-frame one, it also allows access to
provides valuable cues from motion that are not available in a static task. This may
allow, in particular, to disambiguate certain situations which are very difficult or even
impossible to disambiguate with a single frame. We will not discuss tracking here,
but in Chapter 5 we will describe tracking algorithms that integrate our approach
to single-frame pose estimation with a tracking setup, allowing us to relax or even
abandon the initialization assumption.

Providing automatic initialization (and re-initialization throughout the sequence)
for tracking is among the most important applications of single frame pose estima-
tion. In fact, having a perfect pose estimator would eliminate the need for specialized
tracking algorithms, since the accurate pose recovery would simply be done in every
frame. Of course, this is not possible since single-frame estimation is ill-posed: in
many “interesting” activities there is a great deal of occlusion of some body parts by
others, there is often ambiguity related to symmetry, mirror reflections etc. Neverthe-
less the ability to recover pose from a single image is crucial for successful tracking.
We discuss this in more detail in Chapter 5.

Much of the work has relied on deterministic methods guided on the known geom-
etry of the articulated body. In [111] 3D pose is recovered from the 2D projections of
a number of known feature points on an articulated body. Other efficient algorithms
for matching articulated patterns are given in [45, 94, 88]. All of these approaches
assume that detectors are available for specific feature locations, and that a global
model of the articulation is available. Another family of approaches can somewhat
relax these assumptions, at the cost of relying on the availability of multiple views [58].

Other techniques are based on statistical learning approaches. In [87] pose esti-
mation is reduced to contour shape matching using shape context features. In [95],
the mapping of a silhouette to 3D pose is learned using multi-view training data.
These techniques were successful, but they were restricted to contour features and
generally unable to use appearance within a silhouette. Some methods explicitly work
with silhouettes only [40, 2] but those, due to a rather impoverished representation
that greatly increases ambiguity, are usually restricted to a specific type of activity
(walking is particularly popular.)

In [6] a hand image is matched to a large database of rendered forms, using a
sophisticated similarity measure on image features. This work is most similar to
ours and in part inspired our approach to pose estimation. However, the complexity
of nearest neighbor search makes this approach difficult to apply to the very large
numbers of examples needed for general articulated pose estimation with image-based

83



distance metrics.

Finally, we should emphasize that the task of pose estimation we are considering
is decoupled from the tasks of detection and localization, i.e., determining whether
an image contains a person and finding the specific portion of the image occupied by
the person. There are a number of methods for carrying out those tasks, and we will
assume that localization is solved by an external algorithm. Specific arrangements
for obtaining this information in our experiments is described in Sections 4.4 and
Section 4.5.

4.3 Example-based pose estimation

We approach pose estimation as a regression task, and develop an example-based
approach to solving it. As described in Section 2.2.1, we can define a similarity
concept Sp corresponding to pose similarity. We assume that we have access to a
large and representative3 database of images labeled with the corresponding poses.
Then, the pose in a query image x0 can be estimated in by the following two steps:

• Find in the database some examples of poses similar to the unknown pose in
x0.

• Using the retrieved examples, infer the pose in x0.

This fairly vague recipe is detailed in the sections below.

4.3.1 Pose-sensitive similarity

Suppose that a pose is represented by a parameter vector θ (we discuss some param-
eterizations below). Let x1 and x2 be two images depicting people whose articulated
poses are, respectively, θ1 and θ2. Then, we define

Sp,R(x1,x2) = +1 ⇔ Dθ(θ1, θ2) ≤ R. (4.1)

This is a generic similarity “template”, and the precise definition depends on two
parameters: the distance Dθ used to compare poses, and the appropriate threshold R
on that distance. The threshold could be set in two ways. The first is by finding R
which meets some perceptual criteria: if Dθ(θ1, θ2) ≤ R, then human observers will
generally agree that the two poses “look similar”, or are similar for the purpose of a
particular application. Our approach to learning similarity from examples, developed
in Chapter 3, is perfectly suited for such a definition since all it requires is a set of
examples of similar pairs–which in this case may be supplied by human observers. A
second method of setting R is by means of validation tuning with a specific estimation

3In the sense that for a random pose drawn from the distribution of poses, there is, with high
probability, an example with a similar pose, under the relevant definition of similarity discussed in
this section.

84



algorithm. That is, if the goal is to recover pose as precisely as possible,4 and the
estimation algorithm relies on similarity defined in (4.1), then we may look for R that
minimizes the final error.

As for Dθ, there are two avenues for defining it, and the choice depends on the rep-
resentation of the articulated model. A common representation, common in computer
graphics and animation, is by joint angles [93]. Consider a directed graph representa-
tion of an articulated tree, where each node corresponds to a joint (we use the term
joint loosely to refer to any rigid point in the model, so that, for instance, the top
of the skull is also considered a “joint”.) Edges leaving the node correspond to the
limbs connected to that joint, and they connect it to the joints on the other side of
the limb. Then the entire configuration of the model in 3D is given by a set of 3D
rotation parameters in each joint plus the global position and orientation of the root,
which is usually at the hip joint. This representation is convenient to describe articu-
lation, and especially to parametrize articulated motion. Also, it describes the body
articulation independently of the sizes of actual limbs. However it makes defining
distances quite cumbersome. For instance, a 20 degree change in an angle may affect
the global position of body parts very little if it is in a finger, or very much if it is in
the hip.

For this representation, we use the mean cosine deviation distance Dcos:

Dcos(θ1, θ2) =
m∑

i=1

(
1− cos(θi

1 − θi
2)
)

(4.2)

The second representation is in terms of 3D joint locations [57]. If there are L
joints in the model, then the pose θi is fully described by θi = [θ1

i , . . . , θ
L
i ], where the

location of the j-th joint is given by θj = [θj
x,i, θ

j
y,i, θ

j
z,i]

T ∈ R3. This representation is
somewhat redundant, since there are strong constraints on the relative locations of
neighboring limbs, however it is very explicit and thus convenient for manipulating
and comparing poses.

For this representation, we define the maximum deviation distance DD by the
maximum L1 distance between any two corresponding joints in 3D:

DD(θ1, θ2) = max
1≤j≤L

∑
d∈x,y,z

|θj
d,1 − θj

d,2|. (4.3)

In accordance with the approach we have outlined above, we will learn an embed-
ding of the images space into a new space H, such that for two images x1,x2 and
the corresponding poses θ1, θ2, ‖H(x1) − H(x2)‖ is, with high probability, low if
DD(θ1, θ2) ≤ R.

4Note that this is rarely the real goal of an application; for instance, in an activity recognition
scenario, or for understanding gestures, an error of a few degrees or a few centimeters relative to the
“ground truth” is rarely a problem.

85



A
B

Figure 4-2: Illustration of the edge direction histogram (EDH) representation. Col-
ors correspond to detected edge orientation red=0, green=π/4, purple=π/2 and
blue=3π/4.

4.3.2 Image representation

Before we approach the learning task, we need to design the representation of the
input space X . The simplest decision would be to simply use the pixels of the image.
However it is clearly not very helpful, due to a large effect of the nuisance parameters
(color and illumination in particular) on the pixel intensities, and we would benefit
from a representation that is more invariant to nuisance parameters while capturing
information useful for inferring pose. In this chapter we will use the representation
by multi-scale edge direction histograms (EDH) [68], often used in image analysis and
retrieval, but until now it has not, to our knowledge, been used for pose analysis.

In order to compute EDH, we apply an edge detector of choice (we have used
the Sobel detector [54]) to obtain an edge map, i.e. a binary image in which the
value of a pixel is 1 if a detected edge passes through it. Next, each detected edge
pixel is classified into one or more of four direction bins: π/8, 3π/8, 5π/8, 7π/8. This
is done by applying a local gradient operator at each of the four orientations, and
thresholding the response. Then, the histograms of direction bins are computed
within sliding square windows of varying sizes (scales) placed at multiple locations
in the image; the scales and the location grid are parameters to be set. This yields
four integer values (the counts for the four direction bins) for each scale and location.
The resulting multi-scale EDH is obtained by concatenating these values in a fixed
order. Figure 4-2 illustrates the EDH representation; each of subwindows A and B
contributes four numbers, calculated by counting edge pixels of four colors within the
subwindow.5

Assuming, as we do, that the person localization task is solved for us and the image
is centered on the bounding box of the body, a reasonable measure of similarity to
apply to this representation is the L1 distance, since a particular bin in the histogram
corresponds to a roughly fixed location on the body. It is interesting to note the
connection of this distance to the Hausdorff and Chamfer distances often used to

5Some pixels, in particular the ones at edge intersections, may have multiple colors, i.e. multiple
orientations, assigned to them.

86



compare silhouettes or edge images [11]. A related distance is the Earth-Mover’s
distance[55].

Another interesting connection is to shape contexts [11], that have been used for
pose estimation among other tasks [86, 87]

4.3.3 Obtaining labeled data

Our approach relies on the availability of a large database of images labeled with poses.
Such a database may be constructed either by means of computer graphics package,
such as Poser. or by recording data from human subjects. The synthetic generation
is an appealing option since it is extremely cheap, can provide an arbitrarily large
number of examples, and makes it easy to include as much variability in the data as
desired (subject to model limitations of the software.) Importantly, it also provides
accurate ground truth of the pose for every image. The resulting images can be quite
realistic in terms of pose appearance (see Figures 4-3 and 4-6 for some examples).

Alternatively, such a database could also be created by recording images of real
people in a variety of poses, along with the poses themselves measured by one of
the available methods for that (usually based on instrumenting the actor with some
sort of sensors.) However, this may be extremely expensive, labor-intensive and time-
consuming. This may be possible for a constrained set of poses, for instance associated
with a particular task or activity. If the goal is to have a very large database highly
representative of the general pose space, this approach is probably infeasible, and
even more so if we also want to include a significant variation in nuisance parameters
in the data. One potential advantage of such a database, of course, is that the real
training images may, in some sense, look more “like” the real test images the system
would encounter. However in our opinion the state-of-the-art in computer graphics,
as exemplified by Poser, removes this concern since the synthetic images are close
in quality to the real ones, at least for the single-frame pose estimation purposes.6

A more important advantage of a human-based database is in the realistic nature of
the poses it contains, both in terms of the distribution and in terms of attainable
configurations.

Fortunately, there is a way to have the best of both worlds. A set of poses
can be recorded with a motion capture setup, and then used to create a large set
of synthetic images by changing the viewpoint, slightly perturbing the poses, and
randomly assigning the nuisance parameters. This is the approach taken to obtain
the training data used in experiments described in Section 4.5 and in Chapter 5.

4.4 Estimating upper body pose

The experiments described in this section7 deal with estimating only a partial pose,
namely that of the upper body. The joints model specifies the location of shoulders,
elbows and wrists. It is assumed that the person in the image is visible from about

6This may not yet be the case for synthetic rendering of motion!
7This section is based on the work published in [105]

87



Figure 4-3: Example training images for upper body pose estimation

the knee level up and is standing in an upright posture. The orientation (yaw) of the
body is not constrained, and may vary between the two profile views, ±90o.

4.4.1 Training data

The database of poses contains 500,000 images obtained by sampling uniformly at
random the space of articulation angles, applying a feasibility correction algorithm
of Poser (to prevent configurations which are either anatomically impossible or
physically impossible, e.g. surface intersections), and rendering a 180×200 pixel image
with randomly assigned nuisance parameters: illumination (obtained by modeling 4
random light sources), hair style, clothing, and hand configuration. As stated above,
we assume that the body has been segmented from background, scaled, and centered
in the image. Thus no background detail was generated, so the figures are on a
uniform background. Figure 4-3 shows some examples.

4.4.2 The learning setup

The EDH representation was constructed with windows of sizes 8, 16 and 32, with each
window sliding through locations spaced by half its size, yielding 11,728 histogram
bins per image. With two bytes to represent each histogram bin, this requires above
11 Gigabytes to record the EDH for the full database.

Pose similarity was defined by setting a threshold of 0.5 on the Dcos between poses.
This value was chosen by inspection, as it corresponded to a good cutoff between
perceptually similar and dissimilar pairs of poses. Not surprisingly, similarity in this
domain is a rare event; the similarity rate ρ defined in Section 3.2.4, measured on a
million random pairs constructed over the training data, was only 0.0005.

Using the EDH representation as the input space X , we constructed a training
set for SSC: 100,000 positive examples and 1,000,000 negative examples. The larger
number of the negative examples was motivated by the unbalanced nature of the

88



Model k = 7 k = 12 k = 50
k-NN 0.882 (0.39) 0.844 (0.36) 0.814 (0.31)

Linear 0.957 (0.47) 0.968 (0.49) 1.284 (0.69)

const LWR 0.882 (0.39) 0.843 (0.36) 0.810 (0.31)

linear LWR 0.885 (0.40) 0.843 (0.36) 0.808 (0.31)

robust const LWR 0.930 (0.49) 0.825 (0.41) 0.755 (0.32)

robust linear LWR 1.029 (0.56) 0.883 (0.46) 0.738 (0.33)

Table 4.1: Mean estimation error for 1000 synthetic test images, in terms of Dcos.
Standard deviation shown in parentheses. Not shown are the baseline error of 1-
NN, 1.614 (0.88), and of the exact 1-NN based on L1 in X , 1.659. LWR stands for
locally-weighted regression, see Section 2.2.

problem, discussed in Chapter 3.
We evaluated a number of TP-FP gap values on a small validation set, and set

the lower bound on the gap g to 0.25. With that gap bound, SSC selected 213
dimensions. Thus, the size of the database could be reduced, with the most eco-
nomical data storage, from 11 Gigabytes to less than 14 Megabytes (recall that the
dimensions produced by SSC are bit valued.) This data structure was then indexed
by LSH, with l=80 tables and k = 19 bits per hash key. Note that the application
of algorithm 3 (p. 2.4.2) is particularly simple on the bit-valued embedding H since
each dimension only has one possible threshold. Thus the application of SSC with
subsequent indexing by LSH may be seen as simply learning of an appropriate family
of LSH functions.

We also tested the semi-supervised version of SSC described in Chapter 3. As
expected for the low similarity rate in this case, the results were very similar to the
results with the fully supervised version: we obtained 221 dimensions, with 97% over-
lap with the dimensions learned with the supervised algorithm. Thus we get essen-
tially identical results with more than 10 times reduction in learning time (since
the semi-supervised algorithm uses only 1/11 of the training examples used in the
fully-supervised one.)

4.4.3 Results

To quantitatively evaluate the algorithm’s performance, we tested it on 1000 synthetic
images, generated from the same model, so that the ground truth is available. Table
4.1 summarized the results with different methods of fitting a local model; ’linear’
refers to a non-weighted linear model fit to the neighborhood. The average size of
the candidate set C found by LSH (i.e. the union of the buckets in the hash tables)
was 5300 examples, about 1% of the data. We found that in almost all cases, the
true nearest neighbors under DH were among the candidates, which means that we
do not pay significant cost for the speedup obtained with LSH.

The locally-weighted regression (LWR) [7] model was tested with zeroth-order, or
constant, model (i.e., weighted average of the neighbors) and first-order, or linear,

89



Figure 4-4: Examples of upper body pose estimation (Section 4.4). Top row: input
images. Middle row: top matches with LSH on the SSC embedding. Bottom row:
robust constant LWR estimate based on 12 NN. Note that the images in the bottom
row are not in the training database - these are rendered only to illustrate the pose
estimate obtained by LWR.

model (i.e., weighted linear fit.) The robust LWR [22] re-weighted the neighbors in 5
iterations. The purpose of robust LWR, as explained in Section 2.2, is to reduce the
influence of the outliers (examples with high residual under the current model fit) by
iteratively decreasing their weights.

The results confirm some intuitive expectations. As the number of approximate
neighbors used to construct the local model increases, the non-weighted model suffers
from outliers, while the LWR model improves; the gain is especially high for the
robust LWR. Since higher-order models require more examples for a good fit, the
order-1 LWR only becomes better for large neighborhood sizes. Overall, these results
show consistent advantage to LWR. Note that the robust linear LWR with 50 NN is
on average more than twice better than the baseline 1-NN estimator.

We also tested the algorithm on 800 images of a real person; images were processed
by a simple segmentation and alignment program, using a statistical color model of
the static background and thresholding by intensity change. Figure 4-4 shows a few
examples of pose estimation on real images. Note that the results in the bottom
row are not images from the database, but a visualization of the pose estimated with
robust linear LWR on 12-NN found by LSH; we used a Gaussian kernel with the
bandwidth set to the dX distance to the 12-th neighbor. In some cases (e.g. leftmost
column in Figure 4-5), there is a dramatic improvement versus the estimate based on
the single NN. The number of candidates examined by LSH was significantly lower
than for the synthetic images - about 2000, or less than .5% of the database. This
is expected since the real images differ from the synthetic ones in many subtle ways.

90



Figure 4-5: More examples, including typical “errors”; see legend of Figure 4-4. Note
the gross error in the leftmost column, corrected by LWR. Examples in the right two
columns are among the ones with most severe error in the test set.

It takes an unoptimized Matlab program less than 2 seconds to produce the pose
estimate. This is a dramatic improvement over searching the entire database for the
exact NN under L1 in the embedding space, which takes more than 5 minutes per
query, and in most cases produces the same top matches as the LSH. Note that exact
search under L1 distance in X (EDH) would take a number of days, in particular due
to the enormous size of the database mentioned above.

Lacking ground truth for these images, we relied on visual inspection of the pose
for evaluation. For about 2/3 of the examples the pose estimate was judged accurate;
Figures 4-4 and 4-5 show a number of examples of typical estimates. On the remaining
examples it was deemed inaccurate, on some examples the error was quite significant.
Figures 4-4 and 4-5 show a number of examples, including two definite failures. Note
that in some cases the approximate nearest neighbor is a poor pose estimate, while
robust LWR yields a much better fit.

Nevertheless this system clearly can be improved. We can identify three sources
of failure. One, not directly related to the learning and estimation procedures, is
imperfect segmentation and alignment. The other potential reason is the suboptimal
set of dimensions found by SSC (perhaps due to a poor choice of the gap bound); we
suspect that 213 dimensions in the embedding is not rich enough a representation.
The third problem is related to the limitations of the synthetic training set, in terms
of coverage and representativeness of the problem domain. The experiment reported
in the next section addressed some of these issues.

91



Figure 4-6: Examples of images in the motion capture-based repository of full body
pose used in the experiments in Section 4.5.

4.5 Estimating full body pose

In this experiment we estimate full body pose, with the articulated model containing
60 parameters (this is the model illustrated in Figure 4-1(b).)

4.5.1 Training data

To improve the quality of the database we used the motion capture sequence freely
available from [41]. The database contains over 600 sequences recorded from a variety
of activities from everyday life (walking, greeting, brushing teeth), athletics (soccer,
martial arts), etc. We collected 550,000 unique poses (with DD between any two
poses, as defined in (4.3), at least 1cm) and rendered a 240×320 pixel image from
each pose at three random yaws, yielding a repository of 1,650,000 images labeled
with the ground truth pose. The figure in each image is rendered at a random 2D
location within the virtual scene, with up to 1m translation, in order to represent
variability and with the intent to make the resulting estimator invariant to moderate
translations (the 2D location is considered a nuisance parameter.) Figure 4-6 shows
some examples of the images in this repository.

From each image we extracted the bounding box of the silhouette (using the fact
that these synthetically generated images have known segmentation and thus the
silhouette mask is available), and computed the EDH representation as described
above, yielding 13,076 bins in a histogram.

4.5.2 Learning setup and results

We selected 60,000 images from the repository, constrained to upright postures. From
these, we formed 20,000 positive pairs, subject to the similarity defined as in (4.1)
with DD as the pose distance and r = 3cm.

We then applied a semi-supervised version of BoostPro, using linear projections
over two dimensions. That is, each dimension of the embedding is obtained by taking

92



Figure 4-7: Testing on synthetic input. Column 1: test images. Columns 2-4: top 3
matches in H.

two random dimensions of the EDH, and optimized as described in Section 3.4.2, and
the projections are combined by the semi-supervised boosting algorithm introduced
in Section 3.4.1. In this way we constructed a 1,000-dimensional embedding H.

To get a better understanding of the relationship between independently selecting
the dimensions of H with SSC and applying a greedy ensemble learning algorithm
in BoostPro, we also measured the TP-FP gap of the selected dimensions. As may
be expected, some of the selected features, when considered alone, have very low
gap values (as low as .02), nevertheless, they are selected by the boosting since their
weighted gap, or equivalently the value of the objective rm is high.

Figures 4-7 and 4-8 show examples of retrieval by exact NN search in the em-
bedding space H. A more thorough evaluation of the error is reported in the next
chapter, where we discuss integration of our pose estimation approach into a tracking
framework.

4.6 Discussion

We have presented an example-based approach to articulated pose estimation from
a single image. Its main difference from the previously proposed methods is that
it does not attempt to build a global model of pose-image relationship, which is
notoriously difficult. Instead, we use a large synthetic database to directly learn to
detect when the poses underlying two images are similar, and, at the same time,
construct an embedding into a space where that similarity is modeled by low L1

distance between embedded images. The embedding framework and the resulting
ability to retrieve similar poses by a simple L1 search combined with the power of
LSH give this approach a critical advantage: the solution to the complex problem
of pose estimation becomes very simple and very fast. To our knowledge, no other
single-frame pose estimation method that achieves similarly accurate estimates has a
comparable speed. These properties make this pose estimation approach well suited
as a component in articulated tracking algorithms. In the next chapter we describe
two systems in which this is taken advantage of.

93



Figure 4-8: Results on real input. Column 1: test images. Columns 2-4: top 3
matches in H

94


