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Abstract

The right measure of similarity between examples is important in many areas of
computer science. In particular it is a critical component in example-based learning
methods. Similarity is commonly defined in terms of a conventional distance function,
but such a definition does not necessarily capture the inherent meaning of similarity,
which tends to depend on the underlying task. We develop an algorithmic approach
to learning similarity from examples of what objects are deemed similar according to
the task-specific notion of similarity at hand, as well as optional negative examples.
Our learning algorithm constructs, in a greedy fashion, an encoding of the data. This
encoding can be seen as an embedding into a space, where a weighted Hamming
distance is correlated with the unknown similarity. This allows us to predict when
two previously unseen examples are similar and, importantly, to efficiently search a
very large database for examples similar to a query.

This approach is tested on a set of standard machine learning benchmark prob-
lems. The model of similarity learned with our algorithm provides and improvement
over standard example-based classification and regression. We also apply this frame-
work to problems in computer vision: articulated pose estimation of humans from
single images, articulated tracking in video, and matching image regions subject to
generic visual similarity.
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