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Abstract
We summarize recent work on learning improved acoustic fea-
tures, using articulatory measurements that are available for
training but not at test time. The goal is to improve recogni-
tion using articulatory information, but without explicitly solv-
ing the difficult acoustics-to-articulation inversion problem. We
formulate the problem as learning a (linear or nonlinear) trans-
formation of standard acoustic features, such that the trans-
formed vectors are maximally correlated with some (linear or
nonlinear) transformation of articulatory measurements. This
formulation leads to the standard statistical technique of canon-
ical correlation analysis (CCA) and its nonlinear extension ker-
nel CCA. Along the way, we have developed a scalable variant
of kernel CCA and a new type of nonlinear CCA via deep neural
networks (deep CCA). The learned features can improve pho-
netic classification and recognition and generalize across speak-
ers, and deep CCA shows promise over kernel CCA.1

1. Introduction
Articulatory measurements have been used in speech recogni-
tion in a number of ways. Recognition can be improved if
measurements of articulatory motions are available at test time
(e.g. [5]), but this is an impractical setting. In the absence of
articulatory data at test time, we may consider predicting the ar-
ticulation from acoustics and using the predicted values as addi-
tional observations. However, acoustic-to-articulatory inversion
is a complex task, and to date it has been difficult to improve
recognition performance in this way [5]. The work described
here takes a different approach, based on the intuition that while
predicting articulation may be difficult, learning acoustic fea-
tures that are somehow informed by articulation may be easier.
We have previously reported on this line of work [1, 2, 3, 4] and
summarize the methods and main results here.

A common approach to acoustic feature learning is to first
construct a high-dimensional acoustic feature vector by con-
catenating multiple consecutive frames of raw features such as
MFCCs or PLPs, and then to reduce dimensionality in a super-
vised or unsupervised way (using PCA, LDA, neural networks,
etc.). In this work we consider unsupervised transformation
learning, but in a setting where parallel acoustic and articula-
tory measurements are available for some training data (but not
at test time). We ask whether we can use the articulatory in-
formation to learn which linear or nonlinear directions in the
acoustic space are most useful. Such an approach avoids some
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of the disadvantages of unsupervised approaches, such as PCA,
which are sensitive to noise and data scaling, and possibly also
of supervised approaches, which are task-specific.

Our approach is based on canonical correlation analysis
(CCA), a standard statistical technique that finds pairs of maxi-
mally correlated linear projections of data in two views [6], and
its nonlinear extensions. The most common nonlinear extension
is kernel CCA [7]; we have also developed a deep network-
based extension, deep CCA [4]. The two views here are the
acoustic and articulatory data, and only the acoustic projections
are used at test time. The intuition is that articulatory measure-
ments provide information about the linguistic content, and that
much of the non-discriminative information in the two views is
largely uncorrelated and therefore filtered out.

2. Methods
Let X ∈ X , Y ∈ Y denote random vectors in two views,
and let HX ,HY denote spaces of real-valued functions on X
and Y , respectively. We are given N paired training exam-
ples, {xi, yi}Ni=1, drawn from the (unknown) joint distribution
of X,Y . In our case, each pair (xi, yi) represents feature vec-
tors of acoustics (xi) and articulation (yi). All of the methods
we use are based on finding pairs of functions, f(X) ∈ HX and
g(Y ) ∈ HY , that are highly correlated. We can think of these
functions as (linear or nonlinear) projections of X and Y . The
first such pair of functions is the one with maximal correlation:

{f1, g1} = argmax
f∈Hx,g∈Hy

cov (f(X), g(Y ))√
var (f(X)) · var (g(Y ))

, (1)

Subsequent pairs {fj , gj} for j > 1 are solutions to (1) subject
to the constraints that fj(X) is uncorrelated with fi(X), gj(Y )
is uncorrelated with gi(Y ) and fj(X) is uncorrelated with
gi(Y ) for all i 6= j. In our case X and Y are high-dimensional
and we perform dimensionality reduction of X by keeping the
k first (most correlated) projections f1(X), . . . , fk(X). This
k-dimensional vector is our learned feature vector.

CCA: CCA solves Problem (1) for the case where the
projection functions are linear, f(X) = vTX, g(Y ) =
wTY . In this case the solution is straightforward: The vec-
tors v that maximize the objective are the top eigenvectors of
C−1
xx CxyC

−1
yy Cyx, and w are given as w ∝ C−1

yy Cyxv, where
Cxx, Cyy are the autocovariance matrices in each view andCxy
is the cross-covariance matrix between X and Y . To alleviate
over-fitting, one typically regularizes the problem by replacing
the autocovariance matrices with Cxx + rxI and Cyy + ryI ,
where rx, ry are regularization parameters.

KCCA: Kernel CCA (KCCA) is a nonlinear extension to
CCA, and is useful when the relationship between the two views
is believed to be nonlinear (as in our case). In KCCA, the



(a) Speaker-dependent phonetic frame error
rates (%).

(b) Phonetic recognition error rates (%), using a
3-state monophone HMM-GMM recognizer.
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function spaces HX and HY are Reproducing Kernel Hilbert
Spaces (RKHS) with associated positive definite kernels kx, ky .
Using the “kernel trick” one can express f and g as linear
combinations of the kernel evaluated at the data: f(x) =∑N
i=1 αikx(x, xi), and similarly for g(y). Problem (1) then

becomes one of finding directions α1, β1 ∈ RN that satisfy

{α1, β1} = argmax
α∈RN ,β∈RN

αTKxKyβ√
(αTK2

xα) (βTK2
yβ)

, (2)

where Kx ∈ RN×N is the centered version of the Gram matrix
Kij = kx(xi, xj), and similarly for Ky . Subsequent vectors
{αj , βj} are solutions of (2) with the constraints that the result-
ing {fj(X), gj(Y )} are uncorrelated with the previous ones.

The optimal vectors, after a similar regularization, are the
top eigenvectors of (Kx + rxI)

−1 Ky (Ky + ryI)
−1 Kx,

where rx and ry are regularization parameters. In practice, the
kernel matrices may be too large for this computation. We have
addressed this issue with a variant of KCCA in which, first, the
kernel matrices are reduced to a lower rank via an efficient in-
cremental SVD; and then, a linear CCA is done in the resulting
intermediate-dimensionality space. See [2, 3] for details.

DCCA: Deep CCA (DCCA) is a different nonlinear extension
of CCA [4]. In DCCA, rather than constraining the nonlinear
projections to be in RKHS, they are the outputs of neural net-
works with multiple hidden layers. In each layer, each node
computes a nonlinear function of a linear combination of the in-
puts from the previous layer. In our implementation of DCCA,
we have found that the types of nonlinearities typically used
in neural network research (e.g., logistic) do not work well for
DCCA, and have introduced a nonlinearity related to the cube
root which does not saturate (asymptote) for very high posi-
tive/negative inputs. Training is performed by backpropagation
of gradients of the correlation objective through the layers of the
network. For more details, see [4]. The benefits of DCCA over
KCCA include that it is not constrained to a particular choice of
kernel function, and that as a parametric technique, it does not
require accessing the training data at test time (as KCCA does).

3. Experimental results
We have evaluated CCA and KCCA in terms of phonetic frame
classification and phonetic recognition, and deep CCA in terms
of correlation between the projected acoustics and articulation,
using a subset of the University of Wisconsin X-ray Microbeam
Database (XRMB) [8]. The input acoustic features are MFCCs
and their derivatives concatenated over seven frames (273 di-
mensions); the input articulatory features are horizontal and ver-
tical displacements of 8 pellets on the speaker’s lips, tongue,
and jaw, concatenated over seven frames (112 dimensions).

Figs. 1(a) and 1(b) show frame classification and pho-
netic recognition results on four speakers (JW11, JW30, JW13,

JW24) from XRMB, using a k-NN frame classifier. AR-
TIC+MFCC is the “gold standard” of appending the true articu-
latory measurements to the MFCCs; LSQ+MFCC refers to con-
catenation of MFCCs with articulatory predictions using least-
squares; PLS refers to partial least squares, an alternative to
CCA in which one maximizes the covariance rather than corre-
lation. The recognition results include speaker-dependent and
cross-speaker projection learning (in the latter case, there is one
test speaker and the projections are learned on the remaining
three speakers). The main results are that CCA- and KCCA-
based features appended to MFCCs outperform the baseline
features and other projections, and KCCA outperforms CCA.
The most exciting result is that the performance of KCCA takes
a very small (or no) hit in the cross-speaker condition, for which
articulatory data has not been seen at all for the target speaker.
This result suggests that the learned features generalize be-
yond the typical speaker-dependent settings in which articula-
tory measurements have previously been found to be helpful.

Fig. 1(c) shows acoustic-articulatory correlations obtained
with CCA, KCCA, and DCCA on unseen test data. KCCA-
POLY and KCCA-RBF refers to KCCA with a polynon-
ial/radial basis function kernel. DCCA-o-d refers to o output
units and d layers. DCCA convincingly outperforms the other
techniques except at low dimensionalities.

These results demonstrate some potential for acoustic fea-
tures learned with CCA, KCCA, and DCCA. The results trans-
fer well to new speakers for which we have no articulatory data.
In cross-domain experiments on data outside of XRMB, the im-
provements have been more modest [3]. Ongoing work is ex-
ploring better transfer to new domains, acoustic conditions, etc.;
alternatives to appending the learned projections to MFCCs, by
retaining just a “sufficient subspace” of the MFCCs that is un-
correlated with the learned projections [1]; sparse and dynamic
extensions; and applying DCCA to speech recognition tasks.
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