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Abstract

We test an hybrid Deep Neural Network - Hidden Markov
Model (DNN-HMM) phone recognition system that uses mea-
sured articulatory features as additional observations on two En-
glish corpora and an Italian corpus. The three corpora contain
simultaneous recordings of speech acoustics and EMA (Electro-
magnetic Articulograph) data. We show that the additional ar-
ticulatory features reconstructed from speech acoustics through
an Acoustic-to-Articulatory Mapping, always produce a phone
error reduction, with the exception of one single case where,
however, the reconstruction accuracy of the articulatory fea-
tures is significantly lower than in all other cases. Error analysis
shows that in all corpora the articulatory features positively af-
fect the discrimination of almost all phonemes although some
phonemic categories are clearly more affected than others.
Index Terms: Acoustic-to-Articulatory Mapping, Electro-
magnetic articulograph, EMA, Deep Neural Networks, phone
recognition

1. Introduction

Many phenomena observed in speech, such as, e.g., coarticula-
tion effects, can be easily and compactly described in terms of
vocal tract gestures but not on purely acoustic terms. That has
been a strong motivation to use speech production knowledge
for ASR [12]. When measured articulatory data are used the
articulatory information can be incorporated in an ASR system
by appending measured articulatory features to the standard ob-
servation feature vectors (e.g., MFCC vectors). Although such
approach only exploits part of the potential utility of the artic-
ulatory data (e.g., it ignores their potential benefits for mod-
eling speech dynamics), as opposed to strategies that explic-
itly model the cause effect relation between articulatory ges-
tures and acoustics (see, e.g. [13]), it is one of the few strate-
gies where articulatory features (AFs, either measured or “lin-
guistic”, i.e., extracted through phonetic rules) produced phone
(e.g., [1, 2]) and word (e.g., [5, 7, 8]) recognition error reduc-
tions, especially in noisy speech conditions. In [1, 2] the use
of measured articulatory data produced up to a 10.1% relative
phone error rate reduction on the MOCHA-TIMIT dataset in
clean speech conditions. In the present paper we assess whether
similar results also apply to other datasets and languages and
identify the phonemic categories whose discrimination is most
positively affected by the use of AFs.

Like in [1] we used a Deep Neural Network - Hidden
Markov Model (DNN-HMM) phone recognizer where Deep
Neural Networks [11] are both used to estimate the phone pos-
terior probabilities and to carry out the Acoustic-to-Articulatory
Mapping (AAM) which allows to recover the AFs from speech
acoustics. Recovering AFs is necessary in realistic scenarios
where articulatory data are only available during training. The
recovered AFs do not actually add any new information to the

observation feature set, but are the result of a speech-production
driven transformation of the acoustic domain that may result in
an improved acoustic modeling.

The use of recovered AFs can be successful if their recover-
ing is sufficiently accurate (i.e., if the AAM is good enough) and
the method to estimate phone posteriors is able to exploit the
transformed information provided by the recovered AFs. The
reconstructed AFs can be (slightly) more effective (for phone
recognition) if we distinguish between critical and non-critical
articulators when performing AAM [3], and, we expect, if we
achieve a better AF reconstruction, e.g., by applying some dy-
namic constraints on the reconstruction [16], or by applying
methods that are able to handle the non-uniqueness of the AAM
problem ([17, 20]). However, the fact that some studies showed
a non-utility of the reconstructed AFs (e.g., [21]) whereas our
DNN-HMM-based phone recognizer benefited from them [1]
is most probably not only due to an improved AAM but also
to the use of DNNs rather than mixtures of Gaussians for the
computation of the observation probabilities.

In [1] we experimented with several AAM strategies but
only on one dataset, specifically the msakO voice of the
MOCHA-TIMIT dataset [21]. An important question that
follows that study is whether its results also apply to other
datasets and languages. In the present paper we experiment
with two additional corpora, the mngu0 corpus [19] and the
“Lecce corpus” [9]. Like the MOCHA-TIMIT msakO dataset,
the mngu( dataset was recorded from a native British English
male speaker, with the main differences being a much larger
collection of data and more accurate EMA data recording. The
“Lecce corpus” was recorded from 9 native Italian speakers (but
we could only use the data from 5 female speakers). It contains
fewer utterances per voice w.r.t. the other datasets and each
utterance is a single-word utterance. A cross-corpus and cross-
linguistic evaluation not only allows us to assess whether the
utility of the AFs stands across datasets and languages but also
to identify “where and when” the AFs are more relevant. For
example, the relevance of the AFs for phone recognition may
depend on the training datasets (as it happened to be in a binary
plosive consonant classification task, [4]) and on the phonemic
category independently of the language.

2. Deep Neural Networks

A DNN-HMM ASR system is an HMM system where the ob-
servation probabilities are computed by means of a Deep Neural
Network. The DNN-HMM framework have be recently shown
to be very powerful for phone and speech recognition [14, 6].
The DNN computes the phone posterior probabilities (given the
acoustic evidence) from which the observation probabilities can
be easily computed.

In their standard formulation DNNss are feed-forward neural
networks whose parameters are first pre-trained using unsuper-



vised training of Deep Belief Networks ([11]) and subsequently
fine-tuned using, e.g., back-propagation. DNNs can be seen
as an improved version of Feed-forward Neural Networks that
exploits the knowledge of the statistical properties of the input
domain (i.e., P(X)) to effectively guide the search for input-
output relations (i.e., P(Y|X)).

The DNN training is carried out as follows. First a Deep
Belief Network (DBN) is trained in an unsupervised fashion.
Subsequently the DBN is transformed into a deep neural net by
converting the stochastic activation function of each node into a
deterministic function. If the DNN is used to perform regression
or classification an output layer is added on the top. If the DNN
is used for regression the output unit activation function is a
linear regressor with linear basis functions while when it is used
for classification the output unit activation function is a softmax
function. Finally supervised fine-tuning of the parameters is
applied.

A DBN is a hybrid probabilistic graphical model that can be
trained by approximating it to a stack of Restricted Boltzmann
Machines (RBMs). An RBM is an undirected graphical model
with a layer of visible nodes (v) and a layer of hidden nodes
(h) with intra-layer connections and without any within-layer
connection.

The joint probability of an RBM is:

P(v,h) = %emp(—E(v, h)) )

where Z is the partition function and the energy function
E(v,h) for an RBM with both binary visible and hidden vari-
ables is:
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where W;; are the connection weights and b; and ¢; are the
biases on the visible and hidden nodes respectively.

Since there are no within-layer connections the probabili-
ties P(v|h) and P(h|v) factorize and are given by:

P(v; = 1|h) = sigmoid(D>_ Wijh; + b;) 3)
J
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The unsupervised learning of the parameters is performed
by maximizing the log(P(v)) = log(}",, P(v,h)). The gradient
update rule for a parameter 6y, is :
OE(v,h)
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where < ... >g4¢q Stands for expected value under the em-
pirical distribution and < ... >,,,4¢; for expected value under
the model distribution. The latter can be computed by running
block Gibbs sampling where P(h|v) and P(v|h) are sampled.
Rather that running Gibbs sampling until equilibrium we can
still effectively train RBMs by using contrastive divergence [10]
where the Gibbs sampler can run for just one step.

RBMs with Gaussian distributed visible (or hidden) vari-
ables can be also trained by applying simple changes to some
of the equations above.

A DBN can be trained by using layer-wise training where
the output (i.e., the values of the hidden nodes) of a trained
RBM is used as input for the RBM above. Then unsupervised

parameter fine-tuning can be applied where the DBN is consid-
ered as a whole deep architecture.

Like in [1, 2] we used DNNs for both Acoustic-to-
Articulatory Mapping and phone posterior estimation.

3. Corpora

We used three different datasets (see Table 1), all consisting of
simultaneous recordings of speech and Electromagnetic Articu-
lographic (EMA) data (plus other types of articulatory data that
we ignored).

The first dataset is the MOCHA-TIMIT corpus ([22, 23])
which includes 460 British-English utterances for each of the
two speakers, one male (msak(0) and one female (fsew0). The
second one is the mngu0 corpus described in ([19]). It consists
of 1354 British-English sentences uttered by a male speaker.
The latter dataset is the Italian Lecce corpus in ([9]) which con-
sists of single-word utterances recorded from 9 Italian speakers.
The dataset lexicon covers 73 different word types, either pro-
nounced with a declarative intonation or a question intonation,
and 65 pseudoword types. Each speaker was required to read
out each type on average 3 times.

EMA data consist of the x and y positions of upper incisor
(UD) (except for the mngu0 corpus), lower incisor (LI), upper
lip (UL), lower lip (LL), tongue tip (TT), tongue blade (TB)
and tongue dorsum (TD).

We carried out our experiments on the msak( voice of the
MOCHA-TIMIT dataset, on the first 5 female subjects of the
Italian Lecce corpus and on the all mngu0 dataset.

\ dataset | spk [ utterances | phones | articulators |

MOCHA-TIMIT 2 460 44 7
mngu( 1 1354 49 6
Lecce 6 642 (467) 42 7

Table 1: Number of (i) speakers, (ii) recorded sentences per
speaker, (iii) phones in each phone set and (iv) tracked articu-
lators for the three datasets. In parenthesis the number of words
uttered by speaker 2 in the Italian Lecce corpus.

4. Experimental setup

From each dataset we used 60 mel-filtered spectral coefficients
(MFSCs) as acoustic input for the AAM and as observations
in the DNN-HMM phone recognition system. Contrary to [1]
we used as acoustic observations MFSCs rather than MFCCs
as it turned out that they produced slightly better results (in the
baseline, i.e., acoustic observations only). This is in agreement
with previous work in speech recognition based on DNNss (see,
e.g., [15]). Concerning the articulatory data, we used 42 (36 in
the mnguO0 dataset) articulatory features (AFs) consisting of the
x and y trajectories, plus their first and second derivatives, of the
7 (6 in mnguO0) articulatory positions listed in section 3. Note
that upper incisors exhibit very small variations in all phones.
Nevertheless they are reconstructed from speech acoustics as
the other articulators when they are provided in the dataset.
Training and testing sets were created as described in ([21])
and in ([19]) for the msakO dataset of the MOCHA-TIMIT and
mngu0 dataset respectively. Concerning the Italian Lecce cor-
pus for each of the 5 subjects we used two tokens (or at least
one token in the case of subject 2) of each word type and pseu-
doword type in the training set and the remaining data in the
testing set. As a consequence each word type occurred both



in the training and testing dataset. That was necessary to have
enough data to train the DNNs performing AAM.

4.1. Acoustic-to-articulatory mapping

The acoustic-to-articulatory mapping was performed by a 3-
hidden layer DNN with 300 nodes per each hidden layer as in
the simplest DNN configuration of ([1]). The input units of the
corresponding DNN were Gaussian-distributed while all hid-
den units were binary. The input consisted of 5 acoustic feature
vectors (60x5) or 1 acoustic feature vector (60x1) and the out-
put was the vector of 42 (36 in mngu(Q) AFs corresponding to
the frame on which the acoustic input is centered.

4.2. Phone recognizer

We used 3 states per phone. The state boundaries were com-
puted using the Hlnit, HRest and HERest functions of the HTK
([24]). The state posteriors were computed by a 3-hidden layer
DNN, with 9 vectors of MFSCs (60x9 MFSCs) and the corre-
sponding 9 vectors of AFs (42x9 or 36x9 AFs), when AFs were
used as input. Each hidden layer had 1500 nodes while the out-
put layer had 132, 147 or 126 units in msak(Q, mngu0 and Italian
dataset respectively (44 and 49 British-English phonemes x 3
states or 42 Italian phonemes x 3 states).

In order to estimate the phone sequence for each test utter-
ance we first computed the phone unigrams and bigrams and the
state bigrams on the training data of each dataset for each split
using the CMU toolkit ([25]). Then the state posteriors (not di-
vided by the state priors) plus phone unigrams and bigrams and
state bigrams were fed into a Viterbi decoder.

5. Results
5.1. Articulatory reconstruction

The AF reconstruction was evaluated using the Root-mean-
square error (RMSE) and the Pearson product moment corre-
lation (r). In table 2 the three datasets are compared on the
reconstruction of the 36 articulatory features. The trajectories,
velocities and accelerations of the upper incisors in the msak0
and Lecce dataset were excluded in order to have an unbiased
comparison.

The articulatory reconstruction in the mngu0Q dataset out-
performs that in the msakO dataset, especially when using 5
acoustic feature vectors in AAM as input. It confirms that the
mngu0 corpus is a useful and good resource of acoustic and ar-
ticulatory data, at least for the AAM problem, as reported in
[18]. In fact the mnguO dataset is claimed to provide a phoneti-
cally various and large set of data with very reliable articulatory
measurements ([19]). While in MOCHA-TIMIT some artic-
ulatory inconsistencies are well documented mostly for fsew0
dataset, during the recording of mngu0 corpus no displacement
of coils took place ([18, 19]). Note that contrary to [18] here
the mngu0 corpus was compared with the msakQ dataset rather
than the fsewO dataset.

Concerning the Italian Lecce dataset, the RMSE and r val-
ues reported in table 2 were averaged over four speakers, with-
out considering speaker 3. Removing speaker 3 was motivated
by the fact that the reconstruction of the AFs was very poor.
In order to understand why the reconstruction was significantly
worse than for all the other speakers we computed the correla-
tion between actual AFs that belonged to the same phoneme in
the same word type. Such correlation can be seen as a kind of
intra-speaker articulatory coherence. The coherence of speaker

Pearson product moment correlation coefficient (r)

0.
spki spk2 spk3 spka spks

Figure 1: Average correlation between actual articulatory fea-
tures of the same speaker extracted from different instances of
the same wordtype and pseudowordtype (green squares) and
average correlation between actual and reconstructed articula-
tory features for each speaker (red squares) in the Italian Lecce
dataset.

3 turned out to be significantly smaller than in all other speakers
(Figure 1). This lack of articulatory coherence might be due a
displacement of the coils during recording.

MFSCs vector input in AMM
Dataset 5 vectors 1 vector
RMSE [ r RMSE [ r
msak( 0.650 | 0.750 | 0.679 | 0.726
mngu0 0.542 | 0.837 | 0.660 | 0.744
Lecce 0.735 | 0.648 | 0.791 0.561

Table 2: Articulatory reconstruction results in terms of Root
Mean Square Error (RMSE) and Pearson product moment cor-
relation (r) for each dataset. The input of AAM consists of 5 or
1 acoustic feature vectors. Values are averaged on the 5 splits in
msak0 dataset and on the 4 subjects (subjects 3 excluded) in the
Italian Lecce dataset. For an unbiased comparison the upper
incisor trajectories, velocities and accelerations of the Lecce
corpus and the msak0 dataset were excluded.

5.2. Phone recognition

Table 3 shows the frame-wise classification accuracy (FwCa)
and the phone error rate (PER) for the DNN-HMM phone
recognition system using different types of observation sets in
the three datasets.

In msakO and in mnguO the recovered AFs always improve
phone recognition. The PER reduction ranges from 3.1% to
9.8% w.r.t. the acoustic baseline. A perfect articulatory re-
construction would lead to a 25% and a 20.6% PER reduc-
tion respectively. Note that the two British-English datasets use
slightly different phone sets (different number of allophones for
the same phoneme). For this reason a more fair comparison
might be carried out after conversion of one phone set into the
other one.

In the Lecce corpus the PER using reconstructed AFs com-
bined with acoustic ones is worse than that using only acoustics,
while not considering speaker 3 the PER reduction provided by
the articulatory features recovered from 5 acoustic feature vec-
tors, turns out to be about 2% w.r.t. the acoustic baseline. A
perfect articulatory reconstruction would lead to 38.6% (47.5%
without speaker 3) w.r.t. the acoustic baseline.

It is important to point out that the PER reduction produced
by the AFs recovered from 5 acoustic feature vectors might be
due to the implicit use of a larger acoustic context. In fact we
might actually implicitly observe information from more than 9
acoustic frames (specifically 2 frames due to the first AF vector



Feature set msak0 mngu0 Lecce
FWCA % [ PER | FWCA % | PER | FWCA % | PER
MFSCs 68.0 30.0 83.6 13.4 | 84.3(84.6) | 12.4(12.5)
MFSCs + actual AFs 74.9 225 87.5 10.7 | 88.4(89.3) 7.6 (6.6)
MEFSCs + rec AFs 5-1 70.8 28.2 85.5 12.1 | 84.7(85.7) | 13.6(12.2)
MFSCs + rec AFs 1-1 69.9 29.1 85.0 129 | 84.7(85.5) | 14.6 (14.4)

Table 3: Frame-wise phone classification accuracy (FwCa) and phone error rate (PER) for each dataset using MFSCs only, MFSCs
and actual AFs, MFSCs and AFs reconstructed from 5 acoustic feature vectors (rec AFs 5-1) or 1 acoustic feature vector (rec AFs
1-1). Values are averaged over the 5 splits in msak0 dataset and over the 5 subjects in the Italian Lecce dataset. In parenthesis values

without considering subject 3.

+ 2 frames due to the last AF vector). In order to find out if
that was the case we perfomed AAM by only using one vec-
tor of MFSCs as input. It turned out that the phone recognizer
that uses 9 MFSC vectors + 9 vectors of AFs, each one recov-
ered from the corresponding MFSC vector, outperformed the
9-frame acoustic baseline in mngu0 and msakO datasets while
in Lecce dataset the PER was worse. This last controversial re-
sult is most probably due to the fact that there was not enough
data to train a DNN to perform AAM with just one acoustic fea-
ture vector as input. That is confirmed by the poor articulatory
reconstruction results showed in table 2.

5.3. Analysis of error

The PER was computed through the evaluation of the Leven-
shtein distance that is the minimum number of phone edits nec-
essary to change the phone sequence estimated by the Viterbi
decoder into the real one. Three types of possible phone ed-
its/errors are considered: substitution, deletion and insertion.
Table 4 shows separately the relative error reduction pro-
duced by the AFs for each phone edit. For all datasets the AFs,
both the actual ones and the ones recovered from 5 acoustic
feature vectors, seem to affect phone substitution, while their
contribution to phone deletion and insertion is less clear.

| dataset | sub [ del [ ins ‘
msakO 6.5 (33.3) 3.9(5) 8.4 (32.9)
mngu0 | 17.1(372) | 1.1(-49.4) | 12.2(56.1)
Lecce | 4.7 (39.6) | 17.8(20.5) | -0.7 (53.7)

Table 4: Relative reduction (%) of phone substitution (sub),
deletion (del), insertion (ins) rate provided by reconstructed
(from 5 acoustic vectors) and actual (values in parenthesis)
AFs, w.rt. the acoustic baseline for each dataset. Values are
averaged over the 5 splits in msakO dataset and over the 4 sub-
Jects (subject 3 was not included) in the Italian Lecce dataset.

In order to better understand which phonemic categories are
more positively affected by the articulatory features we ranked
all phonemes in descending order from those phonemes that
mostly benefited from the use of AFs to those that do not take
any advantages in terms of frame-wise classification and phone
substitution error (Figure 2). We chose the SAMPA standard
to identify unambiguously all phoneme symbols in all three
datasets.

In the two British-English datasets recovered articulatory
information acts more positively in terms of frame-wise clas-
sification accuracy and phone substitution error reduction on
some fricative and nasal phonemes and on the two affricates:
S’ T, 2, N, tS” and ‘D, ‘T, ‘8%, °N°, 1, ‘n’, “tS°, ‘dZ’ in
msak(0 and mngu0 datasets respectively. Regarding the Italian
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Figure 2: Phone ranking in terms of FwCa improvement (left
panel) and phone substitution error reduction (right panel) w.r.t.
the acoustic baseline in msak0 dataset (A), mngu0 dataset (B)
and Lecce dataset (C). For each dataset the two histograms
show not more than the first 10 phonemes that mainly bene-
fit from using of AFs: the actual ones in pink and light blue
columns and the ones reconstructed from 5 acoustic feature vec-
tors in red and blue columns. On the y-axis of the two his-
tograms the values of FwCa relative improvement and phone
substitution error reduction respectively. On the x-axis the
phonemes are in alphabetic order.

Lecce dataset the single affricate ‘ts’ and some geminates as the
nasals, ‘mm’, ‘nn’, ‘II’, ‘’kk’, the affricate, ‘ttS’ and the plosive,
‘tt’, mostly benefit from using recovered articulatory informa-
tion in terms of frame-wise classification accuracy, while some
single plosives, as ‘b’, ‘p’, ‘k’, and single fricatives, as ‘f’, ‘S,
are affected more positively in terms of substitution error.

6. Conclusion

In this paper we experimented with a cross-corpus and cross-
linguistic evaluation of a DNN-HMM phone recognizer which
uses acoustic and reconstructed articulatory information. Re-
sults show that additional articulatory features always produce
a phone error reduction w.r.t. the acoustic baseline (a DNN-
HMM phone recognizer that only uses acoustic features) if the
articulatory reconstruction is good enough. Furthermore the
analysis of error allowed us to identify the phonemic categories
that mainly benefit from using reconstructed articulatory infor-
mation across datasets and languages.
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