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Abstract

A comparison of human speech recognition (HSR) and
automatic speech recognition (ASR) is presented using a
noisy continuous-speech corpus of null grammar or uni-
formly distributed unigram sentences, focusing on the
differential tendency of machines vs. humans to propa-
gate errors from an unclear phone to its neighbors. It is
shown using controlled experiments that when given the
same context for recognition - in this case a vocabulary of
a limited number of known words - ASR makes as much
as an order of magnitude more errors than HSR. The
study provides evidence to contradict the claim made in
recent literature that narrowing down the context of con-
versation and modeling of exceptional ordering of words
is vital in achieving human-like accuracy by ASR. Using
Chebyshev confidence intervals it is shown that ASR, but
not HSR, propagates a phone recognition error from the
phone to its neighbors at a rate significantly higher than
chance.
Index Terms: automatic speech recognition, human
speech recognition, null grammar, phone errors

1. Introduction
In this paper experiments in human speech recognition
(HSR) and automatic speech recognition (ASR) are pre-
sented using a medium vocabulary continuous speech
database containing recordings of null grammar sen-
tences. A null grammar is defined as a uniformly dis-
tributed unigram grammar where any word can follow
any other word with the same probability. A null gram-
mar corpus provides the advantage that the bottom-up
word recognition accuracy can be measured for both HSR
and ASR with no contribution from a real-life language
model. Word error rates and phone error rates of ASR can
thus be compared HSR to assess the accuracy of just the
acoustic modeling and the pronunciation modeling mod-
ules of ASR. It should be noted that ASR systems can
be assessed with null grammar on any speech corpus by
switching the language model. But the accuracy on gram-
matically sound sentences cannot be compared to HSR
since humans cannot be asked to ignore grammar while

transcribing such a corpus. Limited null grammar com-
parisons of ASR and HSR using different data for the two
conditions were done by Lippmann [1] where HSR was
only tested with monosyllabic words and there were no
comparisons in noisy null grammar speech.

A more important aspect of ASR and HSR compar-
ison in this work is that HSR was constrained to recog-
nize from a limited vocabulary of words just like ASR as
described in Section 2.1. In effect, HSR and ASR were
provided exactly the same language model: uniform dis-
tribution over a finite vocabulary. Not only was the recog-
nition context of HSR and ASR the same, the identically
constrained recognition also meant that there were no ex-
ceptions in the occurrence of words in the speech sen-
tences. It has been recently suggested [2] that two of the
reasons for the superiority of HSR over ASR are that hu-
mans can narrow down the context on the current conver-
sation or scenario and that humans are particularly good
at catching exceptions so that if some unexpected words
are spoken humans can still recognize them with good
accuracy. The current experiments thus provide a control
experiment for this hypothesis by comparing accuracy in
identical contexts and with no exceptions. A wide gap in
performance in ASR and HSR in this setup would mean
that a major deficiency in ASR is in acoustic and/or pro-
nunciation modeling.

The null grammar corpus also allows us to explore
the relative contributions of the acoustic model and pro-
nunciation model, as follows. ASR tends to propagate
errors: given true word sequence [w1, w2, . . .] and rec-
ognized word sequence [ŵ1, ŵ2, . . .], the bigram error
probability is higher than the unigram error probability:
p(ŵn 6= wn|ŵn−1 6= wn−1) > p(ŵn 6= wn) (e.g., [3]).
We do not know of any similar published results concern-
ing phone sequences, and we do not know of any similar
results for HSR. There is some reason to believe that ASR
and HSR may have different patterns of error propaga-
tion. Only about half of all word tokens in spontaneous
speech are produced with the canonical dictionary pro-
nunciation [4], but in most cases, if one tries to represent
the full range of pronunciation variability in an ASR dic-
tionary, the increased entropy of the pronunciation model



causes increased word error rate [5]. We propose the fol-
lowing hypotheses. (H1): ASR acoustic models are less
accurate than HSR acoustic phone detection and recogni-
tion processes. (H2): ASR compensates, in part, by us-
ing a pronunciation model with lower entropy, i.e., a dic-
tionary that fails to represent typical human knowledge
about pronunciation variability and/or about the apparent
phone changes caused by noise masking. (H3): Perhaps
because H1 and H2 are true, or perhaps for other rea-
sons, ASR propagates errors at a higher rate than HSR.
Hypothesis H2 is true by design: this paper uses the
CMU speech recognition dictionary, which contains, on
average, fewer than two pronunciation variants per word..
Hypothesis H1 has been tested previously [6, 7, 8], and
can be confirmed by measuring phone error rates on the
null-grammar corpus. Hypothesis H3 has not been previ-
ously tested (to our knowledge), and is considered one of
the main contributions of this paper.

2. Method
2.1. Database Design

The NullG-Eval0 Speech Corpus [11] was used for eval-
uations and the TIMIT [12] and the WSJ corpora [13]
were used for training the ASR system. The NullG-Eval0
corpus for human and machine speech recognition con-
sists of (1) text prompts containing nonsense sentences,
(2) continuous speech recordings from the text prompts,
and (3) human transcriptions of those nonsense speech
recordings. The corpus contains 1440 recorded utter-
ances from 9 speakers (6 males and 3 females) such that
there are 160 recordings from each speaker. Of those
160 sentences there are forty sentences each with words
picked randomly from the following vocabulary sizes -
1000, 2000, 4000 and 8000. An example of a nonsense
sentence from the speech corpus is ”finally especially dad
learn I hand”, that is, the randomly picked words are spo-
ken in a continuous manner similar to a proper sentence
in English. Since there were only 40 sentences per vo-
cabulary size not all the words in each vocabulary were
spoken by each speaker but the words were randomly
picked from those vocabularies. The vocabulary size is
the same as the perplexity for this data because of the
uniform distribution of the unigrams. For each of the
nine speakers and each of the four vocabularies the 40
sentences are split such that there are 10 sentences each
with SNRs = Quiet, 20dB, 10dB and 0dB (added white
Gaussian noise).

2.1.1. Human transcription setup

To obtain human transcriptions, recordings from each
speaker were transcribed independently by two normal-
hearing human listeners [9]. Unlike machines, humans
cannot remember an exact vocabulary of thousands of
words. To work around this shortcoming the human tran-

scribers had access to the vocabulary in a graphical user
interface while transcribing each audio recording. If they
entered an out-of-vocabulary (OOV) word the user inter-
face presented them with suggestions of words in the vo-
cabulary that are close to the OOV word in either pro-
nunciation or spelling. The transcribers first transcribed
the 1000-word vocabulary sentences which in turn were
arranged in sets of ten sentences at each SNR - Quiet,
20dB, 10dB and 0dB - in that order. The process was
then repeated for 2000, 4000 and 8000 word vocabulary
sentences.

2.2. ASR Architecture

A speech recognition system based on cross-word context
dependent triphones and mel-frequency cepstral coeffi-
cients (MFCCs) was built using Hidden Markov Model
Toolkit (HTK) [10]. Cepstral mean subtraction and
unsupervised adaptation were applied for noise robust-
ness. The triphone models were trained using three read-
speech corpora - TIMIT, WSJ0 and WSJ1 [14].

Humans adapt well to new speakers and environ-
ments. Therefore the ASR system in this work was also
adapted to the NullG-Eval0 corpus using maximum like-
lihood linear regression (MLLR)[18] with one regres-
sion class in an unsupervised manner. To minimize the
chances of adaptation depending heavily on a few sen-
tences, block adaptation was applied in the following
manner. For the 1000-word vocabulary, unsupervised
MLLR was run on the quiet sentences to get the adapted
models. The adapted models were then applied again to
the quiet 1000-word vocabulary sentences to get the ac-
curacy for that condition. The adapted models were then
adapted to the 20 dB 1000-word vocabulary sentences us-
ing MLLR, and the accuracies were obtained using the
adapted models for that condition. This process was re-
peated for the 10 dB and the 0 dB conditions at the 1000-
word vocabulary. The process for 1000-word vocabulary
was then repeated for 2000, 4000, and 8000 word vocab-
ularies such that the initial models for each vocabulary
were the baseline models trained on TIMIT and WSJ cor-
pora without adaptation. The ordering of utterances was
thus the same for both ASR and HSR.

2.3. Phone Error Propagation

Errors were analyzed at the phone level to compare how
errors propagate from a phone to adjacent phones. For
human transcriptions, ground truth sentences and ASR
transcriptions, the sentences were mapped to phones us-
ing the CMU pronunciation dictionary [16] and the HTK
tool HLEd. The following error rates and associated
statistics were then computed using the output of the
NIST scoring toolkit [15]:
1. P (e) or probability of phone error was estimated as
PER/100 where PER is the percent phone error rate in-



Figure 1: Variation of WER for ASR and HSR with perplexity for different SNRs. For null grammar, perplexity = vocabulary size

cluding phone deletions, substitutions and insertions. The
phone errors were then modeled as a random variable
E = E′/N where E′ is a binomial random variable
with N trials such that N is the total number of refer-
ence phones. The mean of E is then µ = P (e) and the
variance is σ2 = P (e)(1− P (e))/N .
2. P (e|ep) or probability of phone error given an error
on the previous phone. P (e|ep) was estimated as a ra-
tio of the number of consecutive phone error pairs to the
number of single phone errors. The phone error given
previous phone error was modeled as a random variable
Ep = E′p/Ne where E′p is a binomial random variable
with Ne trials such that Ne is the total number of single
phone errors. The mean of Ep is then µp = P (e|ep) and
the variance is σ2

p = P (e|ep)(1− P (e|ep))/Ne.
3. P (e|e2p) or probability of phone error given errors
on both of the previous two phones. P (e|e2p) was es-
timated as a ratio of the number of three consecutive
phone errors to the number of two consecutive phone er-
rors. The phone error given previous two phone errors
was modeled as a random variable E2p = E′2p/Np where
E′2p is a binomial random variable with Np trials such
that Np is the total number of phone error pairs. The
mean of E2p is then µ2p = P (e|e2p) and the variance is
σ2
2p = P (e|e2p)(1− P (e|e2p))/Np.

If phone errors did not spread from one phone to adjacent
phones P (e) and P (e|ep) would be identical. To iden-
tify significant differences between P (e) and P (e|ep),
we used confidence intervals based on the Chebyshev
bound. The Chebyshev bound states that P{|X − µ| >

d} < σ2/d2 for a random variable X with mean µ and
variance σ [19]. The null hypothesis H0 : P (e) =
P (e|ep) can be rejected with at least 95% confidence (at
most 5% false rejection rate) if the corresponding confi-
dence intervals P (e) ± d and P (e|ep) ± dp do not over-
lap, where d = σ/

√
0.05 = 4.47σ. Thus it is possi-

ble to conclude that errors propagate at a rate P (e|ep)
significantly different than the chance rate of P (e) if
|P (e)−P (e|ep)| > 4.47(σ+σp). Similarly, we can con-
clude with at least 95% confidence that P (e) 6= P (e|e2p)
if |P (e)− P (e|e2p)| > 4.47(σ + σ2p).

3. Results
3.1. ASR Control Experiments

To present a meaningful comparison between ASR and
HSR, the validity of the ASR system needs to be estab-
lished. For this purpose ASR was tested on the 5K word
WSJ Nov 92 task using the bigram language model pro-
vided in the WSJ corpus. WERs of 5.5% and 4.7% were
obtained without and with unsupervised MLLR, respec-
tively. The WERs are in the ballpark of the best reported
WERs for this task that are between 3% and 4% [17].
MLLR was run separately for each speaker using all of
the sentences from that speaker. In another control exper-
iment the bigram language model was replaced by a null
grammar with the same vocabulary. WERs of 23.5% and
20.0% were obtained without and with adaptation on the
Nov 92 task showing a significant absolute drop in ac-
curacy from the bigram model. Homophone substitution



Table 1: Percent WER for ASR is shown at different noise
levels with and without MLLR on NullG-Eval0 corpus on
the 1000-word vocabulary sentences

Quiet 20dB 10dB 0dB
Before MLLR 23.9 38.1 76.8 98.3
After MLLR 17.2 26.1 56.1 87.5

errors were not counted while scoring the transcriptions
with null grammar.

3.2. HSR vs ASR Results

All of the ASR results shown in this section are from the
adapted models. Using adaptation the percent WER on
1000-word vocabulary sentences dropped as shown in Ta-
ble 1. Similar improvements were obtained for all vocab-
ulary sizes.

Figure 1 shows WER comparisons for ASR and HSR
as the vocabulary size is varied. Four different plots are
shown - one for each SNR. ASR makes as much as an
order of magnitude more errors than HSR in the quiet en-
vironment. These results show that even when given the
same context - in this case a list of words - ASR perfor-
mance is significantly worse than HSR for read speech
at any SNR. ASR error rates double between 20dB and
10dB SNR, and seem to saturate near 100% at 0dB SNR.
HSR error rates also double between 20dB and 10dB
SNR, and double again between 10dB and 0dB; HSR er-
ror rates at 0dB SNR are better than ASR error rates at
20dB. For both ASR and HSR the WER increase with
increasing perplexity is rather slow. Taken as an average
over all SNR levels the difference in WER from the per-
plexity of 8000 to a perplexity of 1000 is about 4% for
ASR and about 3.5% for HSR. The relative insensitivity
of both ASR and HSR to an eight-fold increase in per-
plexity suggests that HSR and ASR differ more in their
modeling of acoustic variability than in their ability to
effectively apply contextual constraints. It is also inter-
esting to note that HSR has only 3.6% and 4.5% WER
in the null grammar perplexity of 4000 and 8000, respec-
tively, in quiet environment. Those errors are close to the
lowest known WER of 3.4% obtained by an ASR system
using a trigram model with a similar sized 5,000 word
vocabulary.

3.3. Phone Error Propagation Results

Analysis of propagation of phone errors to neighboring
phones was done as described in section 2.3. Table 2
shows the values of µp − µ and 4.47(σ + σp) for the
8000 word vocabulary and different SNRs; Table 3 shows
a similar comparison of µ2p − µ. In all cases, there is a
trend toward error propagation rates greater than chance
(µp > µ and µ2p > µ). The trend reaches significance for
ASR, but not for HSR (except at 0dB SNR). It is there-

Table 2: Error propagation to one adjacent phone is signifi-
cantly above chance whenever µp − µ > 4.47(σ + σp); these
columns are highlighted with the symbol “>.”

ASR HSR
SNR µp − µ 4.47(σ + σp) µp − µ 4.47(σ + σp)

Quiet 0.29 > 0.18 0.15 0.22
20dB 0.29 > 0.14 0.19 0.25
10dB 0.16 > 0.11 0.12 0.14
0dB 0.11 > 0.09 0.24 > 0.10

Table 3: Error propagation to 2 adjacent phones is signifi-
cantly above chance whenever µ2p−µ > 4.47(σ+σ2p); these
columns are highlighted with the symbol “>.”

ASR HSR
Noise µ2p − µ 4.47(σ + σ2p) µ2p − µ 4.47(σ + σ2p)

Quiet 0.32 > 0.29 0.29 0.65
20dB 0.24 > 0.21 0.39 0.70
10dB 0.26 > 0.14 0.14 0.40
0dB 0.04 0.09 0.30 > 0.17

fore possible to conclude that ASR propagates phone er-
rors at a rate significantly higher than chance. HSR has
a tendency to propagate errors, but the tendency is not
significant with a Chebyshev test at 95% confidence. At
0dB SNR the exception may have occurred because (1) it
is possible that for humans two phone errors may trigger
an error in the third phone with much higher probability
than at lower noise levels, and (2) at 0DB SNR, ASR ex-
hibits 87.5% WER which means both P (e) and P (e|e2p)
are close to 1.0 and hence similar to each other.

4. Discussion and Conclusions
ASR exhibits phone error rates as much as an order
of magnitude greater than HSR even if supplied with
the same context (null grammar, known vocabulary, no
words are exceptional or out of vocabulary). ASR and
HSR show a similar near-insensitivity to an eight-fold
change in the perplexity of the task. Both ASR and HSR
show a tendency to propagate phone recognition errors
at a rate higher than chance, i.e., p(e|ep) > p(e). This
tendency reaches significance for ASR at all noise levels,
but reaches significance for HSR only at 0dB SNR.

There are at least two aspects of ASR that tend to
encourage error propagation. First, ASR models acoustic
context using triphone models, therefore distortion of one
phone may cause errors in the recognition of neighboring
phones. Second, each word in the dictionary corresponds
to exactly one phone sequence. Consider two words, w1

and w2, with a Levenshtein distance of D(w1, w2) = 2
phones. If the ASR has poor models of the distortions
caused by noise or pronunciation variability, then a pro-
duction of w1 with one distorted phone might be misrec-
ognized as w2, generating two phone errors. Results in
this paper are therefore compatible with the claim that



ASR’s acoustic models are worse than HSR’s acoustic
models, and that ASR overcompensates by dependence
on overly constrained triphone and/or pronunciation con-
text models.
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