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Abstract

Articulatory features describe the properties of speech pro-
duction, i.e., each sound unit of a language (phone) can be de-
composed into a set of features based on the articulators used to
produce the sound. Articulatory features (AFs) have been used
for automatic speech recognition (ASR) with the aim of bet-
ter pronunciation modeling [1], robustness to noise [2], multi-
lingual and cross-lingual portability of the systems [3] etc. In
case of text-to-speech (TTS) conversion systems AFs are ex-
plored to achieve emotional speech synthesis. ASR or TTS us-
ing AFs poses three main challenges:

• firstly, the type of AF representation;

• secondly, the estimation of AFs from the acoustic signal;

• and finally, the integration into conventional hidden
Markov model (HMM) based ASR framework.

The goal of this presentation is to present recent advances made
at Idiap Research Institute in addressing the above mentioned
challenges in the context of ASR, and open the discussion on
natural extension of the work presented here such as, grapheme-
based ASR, generation of AF based dictionaries, template-
based ASR using AFs, use of deep learning approaches to im-
prove AF estimation [4].

The remainder of the extended abstract briefly describes
the recent advances, presents some related experimental results,
and potential future research directions.

a) Type of AF Representation:There exist different types
of articulatory representations of speech, like: binary features,
multi-valued features, and government phonological features.
AFs defined by Chomsky and Halle are binary valued features,
for example +voice and -voice, +sonorant and -sonorant [5].
However, according to Ladefoged, it is more natural to allow
the features to take multiple values [6]. In government phono-
logical feature system, speech sounds are destructed into a set
of primes and can be represented by fusing these primes struc-
turally [7].

In this work, our interest lies in multi-valued AFs. We
present our investigations on different phoneme to AF maps
as given in John Hopkin’s workshop (referred to as JHU map)
[1] and Hosom’s work (referred to as Hosom map) [8]. The
main difference between the two mappings being, Hosom map
is more compact, i.e., it has less number of features (4) and the
cardinality of each of the features is high, while the JHU map
has more features (7) but the cardinality of the features is low
compared to Hosom map.

b) Estimation of AFs: In the literature, typically, each
AF is learned by training a classifier like multilayer percep-
tron (MLP) [1, 2], or support vector machine. In our recent

work, we showed that AF classification accuracy and thereby
the phoneme recognition accuracy can be improved by mod-
eling the inter-feature dependencies using a hierarchy of MLP
classifiers and/or multitask learning [9, 10, 11] .

Briefly, as illustrated in Figure 1, the hierarchical MLP clas-
sifier based approach for AF recognition consists of two stages.
In the first stage, a set of parallel MLPs are used to estimate
articulatory posteriors for the AFs. Each MLP receives PLP
features as input and is trained to classify a specific AF. In
the second stage, to model the temporal contextual information
and inter-feature dependencies of AFs, a new set of MLPs are
trained using articulatory posteriors estimated by the first stage
of MLPs (along with other AFs) with longer temporal context
as input.
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Figure 1: Multi-stage MLP classifiers for articulatory posterior
estimation

c) Integration of AFs in HMM-based ASR:To integrate AFs
into the standard HMM-based ASR systems, the posterior prob-
abilities of AFs are typically converted to phoneme posterior
probabilities by training another classifier. The AFs converted
to phoneme posterior probabilities are either used as state emis-
sion probabilities in hybrid HMM/MLP systems or transformed
suitably for use as features in Tandem systems [1, 2]. In [9], we
proposed an approach where the estimated a posteriori proba-
bilities of AFs are directly integrated into HMM-based ASR by
using them (without any kind of transformation) as feature ob-
servations in Kullback-Leibler divergence based hidden Markov
model (KL-HMM).

Briefly, KL-HMM is an approach where the a posteri-
ori probabilities of acoustic classes are directly used as fea-
ture observation and each HMM state is parameterized using
a categorical distribution [12]. The categorical state distribu-
tions are estimated using Viterbi expectation maximization al-
gorithm by minimizing a cost function based on the KL diver-
gence. Figure 2 shows the proposed approach to integrate AFs
in HMM-based ASR framework using KL-HMM. We present
studies showing how KL-HMM approach can be exploited to
perform phoneme recognition and continuous speech recogni-
tion by learning the probabilistic relationship between subword
units and AFs.

d) Brief Overview of Experiments and Results:We present
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Figure 2: Three state KL-HMM acoustic model for phoneme
where posterior probabilities of AFs are used as feature obser-
vations

phoneme recognition and ASR studies related to the above
described advances. The reader can find phoneme recogni-
tion studies in our previous publications [9, 10, 11]. For both
phoneme recognition tasks and ASR tasks we have observed
that the Hosom map yields better system compared to the JHU
map. Here, we briefly present part of the unpublished ASR
work using the Hosom map.

ASR studies are conducted on the DARPA Resource Man-
agement task. The training set consists of 2,880 utterances spo-
ken by 109 speakers. The test set contains 1,200 utterances
amounting to 1.1 hours of speech data (formed by combining
Feb’89, Oct’89, Feb’91 and Sep’92 test sets). The test set is
completely covered by a word pair grammar (perplexity 60) in-
cluded in the task specification. The phoneme lexicon was ob-
tained from UNISYN dictionary.

The MLPs used for phoneme posterior and articulatory pos-
terior estimation are trained on auxiliary Wall Street Journal
(WSJ) corpus. In case of hierarchical MLP, first set of MLPs
(referred to as WSJ-MLP) are trained on the WSJ corpus, where
as the second set of MLPs (referred to as WSJ-RM-MLP) are
trained on the RM corpus. The size of the hidden layer for all
the MLPs is determined by fixing the total number of param-
eters to 35% of the training data. Table 1 presents the ASR
results. It can be observed that stand-alone AF posterior proba-
bility based system (Af ) yields inferior performance compared
to phoneme posterior probability based system (Ph). How-
ever, the system using both phoneme posterior and AF posterior
based system (Ph+Af ) yields the best system. Thus, indicat-
ing the complementarity between the two posterior features.

Features Dimension
MLP

WSJ-MLP WSJ-RM-MLP
Ph 45 4.7 4.4
Af 54 5.7 5.2

Ph+Af 99 4.3 3.9

Table 1: Word error rate (WER) expressed in terms of percent-
age. On this setup, standard context-dependent phoneme-based
HMM/GMM system with state tying achieves 4.9% WER.

One of the reasons for SystemAf yielding low perfor-
mance could be that the state distribution for AF or a single
categorical distribution may not be sufficient to capture the dy-
namic nature of AFs. We are presently investigating approaches
where, a) multiple categorical distributions are learned per state,
and b) temporal context of AFs posterior probabilities is mod-

eled.
e) Future Directions:The posterior-based ASR using AFs

can be naturally extended to develop

• an ASR system that models the relationship between
grapheme subword units and AFs similar to our recent
work on grapheme-based ASR using KL-HMM [13, 14].
This is interesting from both multilingual speech pro-
cessing and under-resourced ASR perspectives.

• AF based pronunciation dictionary development (which
is particularly interesting for AF-based TTS) following
the recently proposed acoustic data-driven grapheme-
to-phoneme conversion approach using KL-HMM [15].
More specifically, the probabilistic relationship between
graphemes or phonemes and AFs learned by KL-HMM
in the posterior-based ASR system could be exploited to
generate AF based pronunciation dictionary.

• template-based ASR system using AF posterior proba-
bilities similar to the approach of using phoneme poste-
rior probabilities [16].

We will present a few outcomes based on our on-going work
and discuss the potential implications of these future directions.
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