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ABSTRACT

A long standing view in speech production research posits
that articulatory representations are low dimensional. Con-
ceptual and computational models have been built based on
this view. In this work we explore the nature of low dimen-
sional representations derived directly from articulatory sig-
nals based on sparsity constraints. Specifically, we present
a method to examine how well derived representations of
“primitive movements” of speech articulation can be used to
classify broad phone categories. We first extract these spatio-
temporal primitives from a data matrix of human speech ar-
ticulation data using a weakly-supervised learning method
that attempts to find a part-based representation of the data
in terms of basis units (or primitives) and their corresponding
activations over time. For each phone interval, we then derive
a feature representation that captures the co-occurrences be-
tween the activations of the various bases over different time-
lags. We show that this feature, derived entirely from acti-
vations of these primitive movements, is able to achieve an
accuracy of about 80% on an interval-based phone classifi-
cation task. We discuss the implications of these findings in
furthering our understanding of speech signal representations.

Index Terms— speech communication, movement primi-
tives, phone classification, motor theory, information transfer.

1. INTRODUCTION

The motor theory of speech perception [1] states that the ob-
jects of speech perception are the intended gestures of the
speaker, represented as invariant motor commands for lin-
guistically significant movements. One of the implications of
the theory is that the human speech production system must
produce just the right maneuvers to fit the demands of the cat-
egories imposed by the auditory system. Recently researchers
have presented evidence in favor of this [2, 3], showing that
processing speech signals using an auditory cochlea-like fil-
terbank preserves maximal mutual information between artic-
ulatory gestures and the processed speech signals. This sug-
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gests that speech gestures and the auditory system are well
matched to one another and that the filtering properties of
the human auditory system maximally preserve information
about speech gestures, which is in accordance with the pre-
dictions of the motor theory. In this work, we would like to
test a complementary hypothesis with respect to the speech
production system. From a linguistics perspective, Articula-
tory Phonology [4] theorizes that the act of speaking is de-
composable into units of vocal tract action called “gestures,”
and suggests that lexical items are assembled from these dy-
namic primitive units, i.e., constriction actions of the vocal
organs. Note that these representations are essentially low
dimensional in nature. The above ideas suggest that speech
gestures are produced so that they can distinguish between
broad phonetic categories imposed by auditory systems. Here
we investigate whether articulatory representations derived by
imposing constraints on signal properties can be explained in
the light of conceptual proposals such as articulatory gestures.

There is also a strong case for using speech production
knowledge to inform and improve speech technology applica-
tions such as automatic speech recognition; finding efficient
representations is a key building block for such an effort [5].
Some reasons for this include: (i) improved noise robustness
[6], (ii) better performance on spontaneous speech which ex-
hibits a greater degree of coarticulation due to factored repre-
sentations [7, 8, 9], (iii) better modeling of different sources
of variability, e.g., morphology [10], (iv) provision of a com-
plementary view of the information captured by acoustic fea-
tures [11], and (v) the significantly lower-dimensional space
of articulatory-based feature representations [4, 12]. To mo-
tivate the final argument in particular, observe that the speech
signal at the acoustic level has a much higher bit rate (e.g., 64
kbits/sec assuming 8 kHz sampling rate and 8 bits/sample en-
coding) as compared to that of the underlying sound patterns
that have an information rate of less than a 100 bits/sec [13].
The presence of this large redundancy in the speech signal
means that we first need to extract a lower-dimensional rep-
resentation of the signal that best captures the discriminative
information required for a given task at hand. For example,
in the case of a phone discrimination task, we would want to
extract a representation that is able to capture the differences
between various sounds in a language.
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Fig. 1: Schematic of the experimental setup. The input matrix V is constructed either from real (EMA) articulatory data. In this example, we assume that
there are M = 7 articulator fleshpoint trajectories. We would like to find K = 5 basis functions or articulatory primitives, collectively depicted as the big
red cuboid (representing a three-dimensional matrix W). Each vertical slab of the cuboid is one primitive (numbered 1 to 5). For instance, the white tube
represents a single component of the 37¢ primitive that corresponds to the first articulator (7' samples long). The activation of each of these 5 time-varying
primitives/basis functions is given by the rows of the activation matrix H in the bottom right hand corner. The activation matrix is used as input to the
classification module, which consists of 3 steps — (i) dimensionality reduction using agglomerative information bottleneck (AIB) clustering, (ii) conversion to
a histogram of cooccurrence (HAC) representation to capture dependence information across timeseries, and (iii) a final support vector (SVM) classifier.

Extracting such a representation from acoustic data is not
straightforward. However, if we are able to extract from
speech discriminative information about articulatory gestures
(see [4]), which we know are useful in distinguishing different
sounds in a language, we might be better positioned to solve
this problem. In this paper, we explore the question of how
well low-dimensional “articulatory movement primitives” de-
rived from data by imposing sparsity constraints can discrimi-
nate between broad phone categories. Articulatory movement
primitives (or, exemplars) may be defined as a dictionary or
template set of articulatory movement patterns in space and
time, weighted combinations of the elements of which can
be used to represent the complete set of coordinated spatio-
temporal movements of vocal tract articulators required for
speech production [14, 15]. Although we do not claim that
this is a completely validated model for human speech pro-
duction, such a representation captures information regarding
movement synergies, i.e., combinations that simplify the pro-
duction of movements by reducing the degrees of freedom
that need to be specified by the motor control system [16].

Figure 1 presents a schematical overview of the paper. We
describe the articulatory data used for experiments in Section
2. Sections 3 and 4 present the mathematical formalism used
for primitive extraction and a brief quantitative evaluation of
the extraction procedure respectively. Next, in Section 5, we
describe the classification setup including appropriate feature

preprocessing steps. Finally, we present our experimental ob-
servations along with a brief discussion of possible implica-
tions in Sections 6 and 7.

2. DATA

We analyze ElectroMagnetic Articulography (EMA) data
from the Multichannel Articulatory (MOCHA) database [17],
which consists of data from two (British English) speakers -
one male and one female. Acoustic and articulatory data were
collected while each speaker read a set of 460 phonetically-
diverse TIMIT sentences. The articulatory channels include
EMA sensors directly attached to the upper and lower lips,
lower incisor (jaw), tongue tip (5-10mm from the tip), tongue
blade (approximately 2-3cm posterior to the tongue tip sen-
sor), tongue dorsum (approximately 2-3cm posterior to the
tongue blade sensor) and soft palate. Each articulatory chan-
nel was sampled at 500 Hz with 16-bit precision and zero-
phase low-pass filtered with a cut-off frequency of 35 Hz [18].
Next, for every utterance, we subtracted the mean value from
each articulatory channel [19, 18]. Then we added the mean
value of each channel averaged over all utterances to that cor-
responding channel. Finally, we downsampled each channel
by a factor of 5 to 100 Hz and further normalized data in each
channel (by its range) such that all data values lie with the
range [0,1].



3. EXTRACTION OF PRIMITIVE MOVEMENTS

Modeling data vectors as sparse linear combinations of basis
elements is a general computational approach! which we will
use to solve our problem [20, 21, 22, 23, 24]. If z;, x2, ...,
xps are the M time-traces (represented as column vectors of
dimension N x 1) of EMA articulator trajectory variables,
then we can design our data matrix V to be:

V = [z1|za]|... |za ]t € RMXN (1)

where 7 is the matrix transpose operator. We will use convo-
lutive nonnegative matrix factorization or cNMF [22] to solve
our problem. cNMF aims to find an approximation of the data
matrix V using a basis tensor W and an activation matrix H:

T-1
vV=> W@ H 2)

t=0
where each column of W (t) € RZ%M*K jg 3 time-varying
basis vector sequence, each row of H € RZ0K XN i its cor-
responding activation vector (h; is the it row of H), T is
the temporal length of each basis (e.g., no. of data samples

or frames), and the (_’)k operator is a shift operator that moves
the columns of its argument by k spots to the right, as detailed
in [22]. In order to derive primitives that are maximally dis-
criminative of different phone classes, we augmented the data
matrix V with phone label information (after [25]):
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where each column of Vi, is a 40 x 1 vector whose entries
are all 0 save for one — we set the entry corresponding to the
phone label of the current frame? to 1 (there are 40 phone la-
bels in all annotated for this dataset). To force the training al-
gorithm to extract one unique primitive for each phone, we (i)
added a (weak) supervision step to the multiplicative update
rules of the cNMF training algorithm by forcing the Wi,p
matrix to be a 40 x 40 identity matrix, and (ii) set the number
of primitives K equal to the number of unique phone classes
(40). We further add a sparsity constraint on the rows of the
activation matrix to obtain the final formulation of our opti-
mization problem, termed cNMF with sparseness constraints
(or cNMFsc) [14, 15]:
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Note that the level of sparseness (0 < S, < 1) is user-defined.
See Ramanarayanan et al. [14, 15] for the details of an algo-
rithm that can be used to solve this problem.

I'This approach is termed variously as dictionary learning or sparse coding
or sparse matrix factorization depending on the exact problem formulation.

ZPhone labels of each frame were obtained through automatic phonetic
alignment of the data.

4. ALGORITHM PERFORMANCE
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Fig. 2: Root mean squared error (RMSE) for each articulator and
broad phone class obtained as a result of running the algorithm on

all 460 sentences spoken by male speaker msak0.

In order to choose model parameters appropriately, we
computed the Akaike Information Criterion (AIC, [26]),
which overwhelmingly prefered parameter values that re-
sulted in low model complexity. Based on this analysis we
decided to set the temporal extent of each basis sequence (1)
to 10 samples (since this corresponds to a time period of ap-
proximately 100ms, factoring in a sampling rate of 100 sam-
ples per second) to capture effects of the order of the length of
a phone on average. As mentioned earlier, we chose the num-
ber of bases, K, to be equal to the number of phone classes,
i.e., 40. The sparseness parameter .S;, was set to 0.65 based
on experiments with synthetic data.

In order to see how the algorithm performs for different
phone classes, we first performed a phonetic alignment of
the audio data corresponding to each set of articulator trajec-
tories (using the Hidden Markov Model toolkit [27, HTK])
to enable association with different phone classes. Figure
2 shows the root mean squared error (RMSE) for each ar-
ticulator and broad phone class for MOCHA-TIMIT speaker
msak0. Recall that since we are normalizing each row of the
original data matrix to the range [0, 1] (and hence each ar-
ticulator trajectory), the error values in Figure 2 can be read
on a similar scale. We see that in general, error values are
high. The errors were highest (0.13 — 0.2) for tongue-related
articulator trajectories and the upper incisor variable. On the
other hand, trajectories of the lip (LLz and LLy) and jaw
(JAW z and JAWy) sensors were reconstructed with lower
error (< 0.1). We further computed the fraction of variance
that was not explained (FVU) by the model for each sentence
in the database. The histograms of these distribution are plot-
ted in Figure 3. The mean and standard deviation of this dis-
tribution was 0.079 £ 0.028 for speaker msakO (i.e., approx.
7.9% of the original data variance was not accounted for on
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Fig. 3: Histograms of the fraction of variance unexplained (FVU)
by the proposed cNMFsc model for MOCHA-TIMIT speaker
msak0. The samples of the distribution were obtained by computing
the FVU for each of the 460 sentences. (The algorithm parameters
used in the model were S;, = 0.65, K = 40 and T' = 10).

average). These statistics suggest that the cNMFsc model ac-
counts for more than 90% of the original data variance.

5. BROAD PHONE CLASSIFICATION SETUP

In this section, we describe how activation matrices obtained
using the algorithm described above are transformed into fea-
tures suitable for phone classification experiments. We can
hypothesize the sequence of phones corresponding to a given
utterance along with their corresponding time-boundaries by
phonetically aligning the audio. Therefore in this work, the
phone categories are entirely based on categorical informa-
tion obtained from the audio signal.

Since the activation matrices are sparse by formulation,
it does not make sense to use columns of the activation ma-
trix (one per frame) as feature prototypes in a frame-based
phone classification experiment (since there will be zeros cor-
responding to time-frames where no basis is activated). In-
stead, we choose to compute one feature per phone interval.
This way, we are formulating the classification problem as
an interval-based phone classification experiment. Therefore,
given a segment of activation columns for a given phone inter-
val (i.e., a block subset of columns of the activation matrix),
we have to compute a single feature. First, we quantize the
space of activation vectors (columns of the activation matrix)
to generate a codebook representation of the time-series us-
ing an agglomerative information bottleneck-based clustering
technique; second, we compute histograms of co-occurrences
(denoted HAC [28]) of the codebook indices over the time-
series’. HAC representations are useful since they explicitly
model cooccurrences of articulatory feature instances over
time. We describe the procedure in more detail below.

3Notice that the initial quantization step is needed because the column
entries are not discrete-valued, making it impractical to compute meaningful
co-occurrences directly.

14

0 20 40 60 80 100 120 140
|H|
Fig. 4: Mutual information I(A; ) between quantized activation

space H and the space of acoustic features A as a function of the
cardinality of A (in other words, the number of quantization levels).

5.1. Codebook generation

We perform vector quantization (VQ) of the columns of the
activation matrices using the agglomerative information bot-
tleneck (AIB) principle [29]. We formulate the problem as
that of finding a quantization or a compressed representation
# of the activation space H that minimizes the mutual infor-
mation I(#; ) between them, while simultaneously maxi-
mizing the mutual information I(A; ) between 7 and the
space of acoustic features 4. In other words, we would like
to find that quantization of the duration space that achieves
maximal compression while retaining as much discrimina-
tive information as possible about acoustic features*. We use
the VLFeat software [30] to perform this clustering. Figure
4 plots the mutual information I(A; ) as a function of the
number of clusters/codebook entries. We observe a rapid drop
in mutual information as the number of clusters drops below
20. Based on empirical observation of this graph, we choose
a codebook size of 32 clusters for our experiments.

5.2. Computing histograms of co-occurrences

We first replace each frame of the activation matrix H with
the best matching centroid of the codebook. This way, ac-
tivation matrix is now represented by a single row vector of
VQ-labels, Hyyqnt. A HAC-representation of lag 7 is then
defined as a vector where each entry corresponds to the num-
ber of times all pairs of VQ-label are observed 7 frames apart.
In other words, we construct a vector of lag-T Co-occurrences
where each entry (m,n) signifies the number of times that
the input sequence of activation frames is encoded into a VQ-
label m at time ¢ (in the row vector H j,4n¢), While encoded
into VQ-label n at time ¢+ [25]. By stacking all (m, n) com-
binations, each phone interval can be represented by a single
column vector where the elements express the sum of all /2

4Note that we aren’t adding any extra info from acoustics to the activation
features obtained from articulatory data. We are just clustering it differently
using acoustic information. Thus the argument that we are using only articu-
latory information to cluster phone categories still holds water.



possible lag-7 co-occurrences (where K is the number of VQ
clusters). We can repeat the procedure for different values of
T, and stack the results into one “supervector”’. Note however,
that the dimensionality of the HAC feature increases by a fac-
tor of K2 for each lag value 7 that we want to consider. In
our case, we empirically found that choosing four lag values
of 2, 3, 4 and 5 frames worked well.

5.3. Classification experiments

We used support vector machine (SVM) classifiers to per-
form classfication experiments [31]. We experimented with
both linear as well as radial basis function (RBF) kernels and
empirically found that the former gave better classification
accuracy. This could be due to the large dimensionality of
the HAC feature space. Hyperparameters were tuned using a
grid-search method.

6. OBSERVATIONS AND RESULTS

Table 1 shows the performance of the activation features (af-
ter appropriate HAC-feature transformation) on an interval-
based phone classification task. Also shown for comparison
purposes are the performances of the raw EMA pellets them-
selves, as well as mel-frequency cepstral coefficient features
(13-dimensional) on the same task. Initial experiments sug-
gest that the activation features learnt by the cNMFsc algo-
rithm significantly outperform both raw MFCC and raw EMA
features in terms of classification accuracy.

For a deeper understanding of what the classification ac-
curacy numbers in Table 1 actually mean, we also computed
the entropy of each feature set and mutual information® (MI)
between each feature set and the phone labels. We observe
that although the entropy (and consequently bit rate assum-
ing a fixed encoding scheme) of primitive activation features
is lower than that of the raw MFCC or EMA features, the
mutual information between the phone labels and the differ-
ent features considered is still comparable. This, along with
the weak supervision during the learning process, suggests
that primitive activations are a useful, low-dimensional rep-
resentation capable of disciminating phone classes. In addi-
tion, we can see that although the MFCC and EMA features
have a similar entropy value, the former has a higher MI. This
is in agreement with the observation of a higher classifica-
tion accuracy. The challenge for future work will be finding
representations that push the classification accuracy envelope
while minimizing the required bitrate.

5To estimate the probability of a given feature value: (i) We clustered
the data using k-means clustering (K = 128) and assigned each feature to
a cluster. (ii) We set the probability of occurrence of a feature to be equal
to the (maximum likelihood estimate of the) probability of occurrence of its
corresponding cluster.

Table 1: Performance of various features on a interval-based phone
classification experiment (after appropriate transformation to HAC-
representations). For clarity of understanding we also show the en-
tropy of the feature set along with the mutual information between
the feature set and classification labels £ in each case.

Feature set X Class. H(X) I(X;L)
Acc. (%)

MFCC 71% 6.9 1.68

Raw EMA pellets 61.78% 6.9 1.59

Primitive activations ~ 80.59% 6.5 1.63

Phone labels £ 100% 4.9 4.9

7. DISCUSSION AND OUTLOOK

Our results suggest that articulatory movement primitives
offer information for discriminating between broad phone
classes. It is important to note that the performance of
these features is contingent upon the way they are extracted,
and therefore, algorithmic choices, such as the sparseness
value S}, number of primitives, and the temporal extent of
each primitive, will greatly influence the outcome of sub-
sequent classification experiments®. Having said that, it is
encouraging to observe that the computationally estimated
lower-dimensional primitive representations of speech artic-
ulation contain useful information to distinguish between
broad phone categories. The question that remains is in ex-
plaining the gap between the abstract (conceptual) low dimen-
sional production representations and those derived by impos-
ing sparseness constraints on observed movement data.

A partial answer to this may arise from the fact that the
(EMA) articulatory data used in the experiments offers only
a limited view of the complex articulatory mechanisms. Al-
though they do encode information about phonetic categories,
these movements represent only a part of the picture with re-
spect to the phonetic categories. But more generally, the Mo-
tor Theory of speech perception [1] suggests that the human
speech production system must produce just the right maneu-
vers to fit the demands of the categories imposed by the audi-
tory system. Assuming that articulatory movement primitives
can be considered as a surrogate for atleast a subset of these
maneuvers, our results are in agreement with the theory. An
exciting future research direction that this sets up is under-
standing whether information transfer during speech produc-
tion is performed so as to effect efficient perception of audi-
tory categories. The work described in this paper, along with
other efforts (such as [2, 3]), are an initial step at answering
these questions and could open up new avenues of research
into speech production.

%The primitives we extract will depend on the cost function that we for-
mulate and optimize. Development of better problem formulations and algo-
rithms to extract primitives is an exciting area of ongoing and future research.
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