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Abstract

In recent years, acoustic-phonetic features (APF) have received
great interest as a replacement for phones in automatic speech
recognition (ASR) systems. Many studies have focused on im-
proving feature sets and acoustic parameters to describe the
APFs. Invariably, these are developed and tested on a limited
number of well-researched databases containing read speech.
When tested on conversational speech data, these improved
APFs and acoustic parameter sets, however, do not show the
same improvement. In two experiments, we show that this ap-
proach does not work because some of the basic assumptions
(here: segmentation in terms of phones) that work well for read
speech do not work for conversational speech. More generally
speaking, our studies suggest that we need to take the nature
of our application data into account already when building the
concepts, when defining the basic assumptions of a method, and
not only when applying the method to the application data.
Index Terms: acoustic-phonetic feature classification, conver-
sational speech, support vector machines

1. Introduction

Acoustic-phonetic features (APFs) have received substantial in-
terest in the field of speech science and technology as basic unit
of representation (e.g., [1, 2, 3, 4, 5, 6]). The most popular
corpus for APF classification is beyond a doubt TIMIT [7], a
corpus of read American English, (e.g., [8, 9, 11]). No other
corpus of comparable size comes with equally accurate and de-
tailed phonetic transcriptions. Hardly any work on APF classifi-
cation, however, has been done on spontaneous, conversational
speech (e.g., Switchboard [12]), even though a major reason for
using APFs is that this representation might have more potential
to capture pronunciation variability. To our knowledge, only the
work done during the 2004 Johns Hopkins Summer Workshop
[13, 1, 14] and Pruthi and Espy-Wilson [15] used Switchboard
for APF research.

In the field of APF classification, researchers have focused
on finding the ideal set of acoustic parameters for building ei-
ther multi-value or binary classifiers (e.g., [16, 4, 17, 18]) or
the ideal statistical classification method (e.g., a comparison of
ANNSs with SVMs by [19]).

Previous studies have in common that it is not known
whether improved classification in read speech generalizes to
spontaneous speech. Also, classifiers are trained and tested on
the basis of APF labels that were automatically generated from
broad phonetic transcriptions. APF labels created in that way
change synchronously at phone boundaries, which obviously
violates the observation that articulators move independently

and asynchronously. The effect of this automatic mapping on
APF classification performance may well be much larger in
spontaneous speech than in read speech.

This paper presents two studies which demonstrate
that methods yielding improvements in specifically designed
databases do not automatically do so in real-life data. The first
study aims at developing acoustic parameters for accurate clas-
sification of stationary sounds (e.g., nasals) as well as short
acoustic events, such as bursts in plosives. The second study
presents experiments from a data selection approach for im-
proving the training material for APF classifiers. Both studies
compare the performance achieved on read speech vs. conver-
sational speech, and present analyses of observed discrepancies.

2. Materials and Methods
2.1. The two studies

Study I presents experiments aimed at optimizing the acous-
tic parameters for manner classification using parameters that
provide both a high frequency and a high time resolution. We
train and test classifiers for read speech (TIMIT) and sponta-
neous speech (Switchboard). APFs are obtained using the con-
ventional approach of automatic mapping from phone transcrip-
tions to APFs.

Study II investigates the so-called elitist approach [20] on
the task of APF classification of conversational speech. The eli-
tist approach was proposed as a solution for dealing with misla-
beled frames in the training data. In this approach, initial mod-
els are trained on the complete training set and each frame is as-
signed its probability for being correctly classified. For training
the final model, only those frames are selected, whose probabil-
ity for correct classification is bellow a set threshold.

In both studies, Support Vector Machines (SVMs) are used.
The SVMs are trained and tested using the LibSVM package
[21]. We adopt the one-versus-one method and use the soft-
margin approach. The parameters C' and ~y are optimized for
each study separately (and explained below) using a grid search.

2.2. Acoustic-phonetic feature values

Table 1 shows our set of APF values. In order to develop acous-
tic parameters for accurate classification of stationary sounds,
plosives are represented as a sequence of closure and release.
Affricates are a sequence of a plosive and a fricative. Since not
all of our available speech material comes with boundaries be-
tween these two parts, affricates were excluded from our experi-
ments. As manner of articulation is only defined for consonants,
vowels were excluded too.



Table 1: Mapping of TIMIT phone symbols to the manner APF values.

Phone Manner APF Value
sil, pau, h# silence
Lel,r liquid
w,y glide
em, en, eng, m, n, ng, nx nasal
dh, f, hh, s, sh, th, v, z, zh, hv fricative
b,d, g, p,t, k,q burst+release
bel, dcl, gel, pel, tel, kel closure

ch, jh, dx, epi, all vowels NIL

Table 2: Phone-to-APF mapping: Mapping of the values in SV-APF
('Dgl’ = Degree of forward constriction) to our set of APF values.
Phone Dgl Our APF Set
1, el closure liquid
er,r approximant liquid
w,y approximant glide
em, en, eng, m, n, ng, nx closure nasal
dh, f, hh, s, sh, th, v, z, zh, hv fricative fricative
b,d, g, p,t, k,q fricative burst+release or fric.
bel, dcl, gel, pel, tel, kel closure closure
silence silence silence

2.3. Read speech corpus: TIMIT

TIMIT contains phonetically balanced sentences read by 630
speakers of American English. We followed TIMIT’s training
(3696 utterances) and test division (1344). The TIMIT database
comes with manual phone level transcriptions, which have been
automatically relabeled in terms of APF values according to Ta-
ble 1.

2.4. Spontaneous speech corpus: Switchboard

Switchboard is a corpus of telephone bandwidth speech from
spontaneous conversations speech from 500 speakers of Amer-
ican English [12].

SVitchboard-APF (SV-APF) consists of 78 utterances (a
total of 119 s of speech, excluding silences) [14]. There is no
overlap between STP and SV-APF. SV-APF contains phone la-
bels along with APF labels. The original set of APF labels was
manually adapted to our set of labels [25], starting from the tier
‘Dgl’ (Degree of forward constriction). Table 2 shows the map-
ping between these two sets. The resulting transcriptions are
further referred to as manual-SV-APF. Additionally, in order to
be able to make direct comparisons between the Switchboard
and TIMIT results, the APF labels (and boundaries) from the
78 manual-SV-APF utterances were generated automatically.
These transcriptions are referred to as automatic-SV-APF.

The Switchboard Transcription Project (STP) [22] con-
tains 72 minutes of speech from the Switchboard corpus (taken
from 618 conversations by 370 different speakers) that were
manually transcribed phonetically. The STP labels are related
to the phone set used for TIMIT, but in STP, plosives are an-
notated as one segment and not as a sequence of closure and
burst+release (e.g., /pcl/ and /p/ in TIMIT map to /p/ in STP).
The STP plosives were therefore automatically split into closure
and burst+release classes using an automatic procedure [23].
The agreement of labels obtained with the automatic labeling
method and the manually obtained labels of the plosive seg-
ments in the manual-SV-APF corpus was 63%. This agreement
is in the range of what has been reported in the literature, e.g.,
[24] reported an agreement for plosives of 47% in word-medial
and 97% in word-initial position).

3. Study I: Improving acoustic parameters
for APF classification

3.1. Four sets of acoustic parameters

Previous research investigated different methods to parameter-
ize the acoustic waveforms and different window lengths, and
shifts for the detection of specific acoustic events. For multi-
value APF classification tasks, however, mostly MFCCs have
been used (e.g., [20, 5, 4, 6, 11]). With the conventional 25 ms
window shifted with 10 ms, good results are obtained for fairly
stationary features. In order to accurately detect short acoustic
events, such as bursts in plosives, shorter window lengths and
shifts are needed, e.g., [18] used 5 ms windows shifted with 1
ms steps.

Our goal, however, is to capture both very short (e.g.,
bursts) and longer acoustic events (e.g., nasality). To that
end, we investigate MFCCs derived from two different window
lengths and shifts and their combinations:

e Baseline: window size: 25 ms; window shift: 10 ms
e Short: window size: 5 ms; window shift: 2.5 ms
e Long: window size: 25 ms; window shift: 2.5 ms
e Both: the Short and Long MFCCs are concatenated

For all sets, the input speech is first divided into overlapping
Hamming windows of 25 ms or 5 ms with a 10 ms or 2.5 ms
shift and a pre-emphasis factor of 0.97. For the 25 ms win-
dows, a filter bank of 22 triangular filters equally spaced on the
Mel-scale was used to calculate 13 MFCCs (C0-C12) and their
first and second order derivatives (39 parameters). For the 5 ms
windows, a filter bank of seven triangular filters was used and
seven MFCCs (C0-C6) and their first and second order deriva-
tives were calculated (21 parameters). Cepstral mean subtrac-
tion (CMS) was applied to all parameters.

The SVM classifiers use a temporal context of 30 ms at both
sides of the frame to be classified. For Baseline, three frames
(30 ms) to the left and right of each frame were concatenated,
resulting in MFCC vectors of length 7 *+ 39 = 273. For the
Short, Long, and Both classifiers also three frames were con-
catenated, but taking only every fourth frame, in order to cover
the same temporal context as in Baseline. This resulted in fea-
ture vectors of length 273 for Long and 147 for Short. For Both,
feature vectors of long and short windows with the same mid-
point were concatenated, resulting in feature vectors of length
273 + 147 = 420.

3.2. APF classification of TIMIT

For the optimization of the C' and -y parameters, two indepen-
dent subsets of 5000 feature vectors (one for training and one
for testing) were extracted from the original TIMIT training set.
For training the SVM classifiers with the Baseline parameters,
100k vectors were extracted from randomly chosen files from
the TIMIT training set. For the Short, Long, and Both param-
eters, the same audio data was used, resulting in 400k vectors
(the shift is four times smaller). The resulting classifiers were
tested on 294,984 10 ms frames and 1,173,665 2.5 ms frames
from the TIMIT test set.

Table 3 shows the APF classification accuracy in terms of
percentage correctly classified frames on the TIMIT test mate-
rial. The diagonals additionally show the 95% confidence inter-
vals. F-scores are calculated as the harmonic mean of precision
and recall and shown for each class. The best performing clas-
sifier for each APF is highlighted in bold.



Table 3: Frame-level confusion matrices for the APF classifiers trained
and tested on TIMIT. The row labels represent the true classes, the col-
umn labels represented the classes recognized by the classifier. Average
F-scores: BL = 0.84; Short =0.86; Long = 0.87; Both = 0.88.

BL Sil Liq Gli Nas Fric Bur Clo
Sil 932+2 03 0.2 0.8 3.0 0.6 2.0
Liq 04 89.0+3 24 2.8 2.8 1.0 1.4
Gli 0.8 128 77.0+7 2.8 33 1.3 2.0
Nas 1.6 2.4 06 863+4 42 0.5 44
Fric 2.7 1.1 0.4 1.6 895+2 1.6 3.1
Bur 2.8 29 0.6 1.9 12.8 652+6 13.8
Clo 4.3 0.9 0.3 3.5 4.9 24  83.6+3
Sum  105.8 1094  81.5 99.7 1205 726 1103
F 0.93 0.88 0.81 0.84 0.88 0.73 0.83

Short  Sil Liq Gli Nas Fric Bur Clo
Sil 925+1 0.2 0.1 0.9 3.6 0.6 2.1
Liq 06 89.1+2 28 3.7 2.1 1.0 0.8
Gli 0.6 13.8 78.1+4 32 2.1 1.4 0.8
Nas 1.7 2.7 0.8 87.6+2 32 0.4 35
Fric 3.0 0.8 0.4 20 885+1 25 29
Bur 2.5 1.5 0.5 0.8 11.6  76.4+3 29
Clo 4.9 0.6 0.2 32 4.1 2.1 84.8+2
Sum  105.8 108.7 829 1014 1152 844 1016
F 0.92 0.89 0.81 0.85 0.88 0.80 0.85

Long Sil Liq Gli Nas Fric Bur Clo
Sil 933+1 0.2 0.1 0.7 29 0.7 2.1
Liq 0.5 903+2 29 2.2 22 1.0 0.9
Gli 0.8 9.8 831+3 2.0 22 1.2 1.0
Nas 1.7 1.8 0.7  89.0+2 25 0.4 3.8
Fric 2.4 0.8 0.4 1.3 90.1+1 23 2.7
Bur 2.4 1.4 0.5 0.5 103 78.0+3 7.0
Clo 4.3 0.7 0.2 3.0 4.0 27  85.1+2
Sum 1054 105.0 87.9 98.7 1142 863  102.6
F 0.93 0.90 0.85 0.88 0.90 0.81 0.85

Both Sil Liq Gli Nas Fric Bur Clo
Sil 935+1 02 0.1 0.7 2.6 0.7 22
Liq 05 91.0+2 25 2.0 2.0 1.0 0.9
Gli 0.6 93 842+5 1.8 1.9 1.3 0.9
Nas 1.6 1.7 0.7 89.4+> 23 0.3 39
Fric 2.3 0.7 0.3 1.2 90.8+a1 22 2.5
Bur 2.0 1.3 0.5 0.6 89 79.6+2 7.0
Clo 4.1 0.6 0.2 2.9 3.8 2.8  85.6+2
Sum 1046 1042 885 98.6 1123 879 103.0
F 0.93 0.91 0.86 0.88 0.90 082  0.86

Table 4: Frame-level confusion matrices for classifiers trained on STP
and tested on automatic-SV-APF. Average F-scores: BL = 0.66; Both
=0.65.

BL Sil Liq Gli Nas Fric Bur Clo
Sil 91.3+6 04 0.2 1.0 5.0 0.7 1.5
Liq 69 73.0+34 69 6.3 5.1 0.2 1.6
Gli 2.8 16.8  64.0+38 10.2 5.2 0.7 0.2
Nas 6.9 6.1 44 777+ 45 0.1 04
Fric 13.7 1.7 1.0 72 684422 49 3.1
Bur 25.6 2.2 1.6 35 250 348+4s 07
Clo 16.2 0.6 0.8 8.4 21.0 2.8  50.3x29
Sum 1634  100.8 78.9 1143 1342 442 57.8
F 0.91 0.70 0.69 0.68 0.63 0.41 0.60
Both  Sil Liq Gli Nas Fric Bur Clo
Sil 874+3 1.2 0.9 2.1 52 1.1 2.1
Liq 88 779+18 44 35 35 0.4 L5
Gli 2.3 126 67.1+23 11.1 6.2 0.8 0.0
Nas 79 6.8 36  747+15s 5.0 1.1 1.0
Fric 13.4 1.1 1.4 54  709+12 44 33
Bur 28.9 2.0 1.0 34 197  362+1s 89

Clo 18.9 1.3 0.6 7.0 18.8 6.3

471415

Sum 167.6 1029 79.0 1072 1292 50.3 64.0
F 0.89 0.71 0.69 0.66 0.65 0.37 0.55

Comparing the three new acoustic parameters with the
baseline shows that the Both classifier performed best for
‘burst+release’ (Bur): the F-score increases from 0.73 to 0.82.
This was to be expected, since bursts are events of very short
duration. The Short and Both classifiers perform best for ‘frica-
tive’ (Fric). The average frame level accuracies are: 83.4% for
Baseline, 85.3% for Short, 87.0% for Long, and 87.7% for Both.
Most importantly, the Both classifier seems to be able to com-
bine the classification power of the Short and Long classifiers.

Since studies from the literature all tend to use slightly dif-
ferent sets of APF values, a fair comparison with the perfor-
mance of our classifiers is not possible. However, the accu-
racy of 87.7% reached by our new set of acoustic parameters
show satisfactory results for TIMIT, both in comparison with
our baseline and with previous results for multi-value classifi-
cation experiments from the literature (e.g., for manner of artic-
ulation - excluding vowels- [19] achieved an accuracy of 75.6%,
[20] of 70%, and [17] of 74.8%).

3.3. APF classification of Switchboard

We trained classifiers with the best performing set acoustic pa-
rameters (Baseline and Both) on the complete STP material us-
ing the same procedure as for TIMIT. Classifiers were trained
using 50k frames with the Baseline feature (10 ms shift) and
the corresponding 200k frames for Both (2.5 ms shift). The
classifiers were tested on automatic-SV-APF, which consists of
53,115 frames.

Table 4 shows that overall the frame-level classification
accuracy and the performance in terms of F-scores obtained
with Switchboard is much lower than the results for TIMIT,
i.e, F= 0.65 vs. F= 0.88 for Both. Comparing Baseline and
Both on Switchboard, does not show the same improvement
for Both that was found for TIMIT (Both: F = 0.65 vs. BL:
F = 0.66). Moreover, the additional temporal information does
not yield the rise in performance for the short events (F-scores
for ‘burst+release’ (Bur): 0.41 for Baseline vs. 0.37 for Both)
which was found in the TIMIT experiments. Apparently, im-
provements obtained for read speech do not generalize to spon-
taneous speech.

Also previous studies reported that classification perfor-
mance is substantially worse for Switchboard than for TIMIT.
For instance, Pruthi and Espy-Wilson [15] report accuracies of
77.90% for detecting vowel nasalization in TIMIT, but only
69.58% for Switchboard.

3.4. Impact of labeling accuracy

Conversational speech shows more variability (e.g., [26]) than
read speech, and articulatory gestures may heavily overlap. We
hypothesize that the canonical mapping from phone labels to
APF labels introduces more errors in spontaneous than in read
speech. This might explain why the improvement found for
Both for TIMIT was not found for Switchboard.

In order to estimate the impact of the labeling accuracy of
the test set, the classifiers trained on STP (cf. section 3.3) were
additionally tested on the 53,115 frames of manual-SV-APF,
which contains more accurate APF labels. The results showed
that the overall classification performance is still lower than for
TIMIT (BL: 0.60 vs.0.84 for TIMIT) but here the Both classifier
performs better than the Baseline classifier (F-scores: 0.65 vs.
0.60). This experiment shows that the labeling accuracy of the
test set does have an impact on the classification performance.

In order to estimate the impact of labeling accuracy in the
training set, we calculated the amount of erroneous labels. We



computed the number of speech samples in which the label-
ing in the automatic-SV-APF transcriptions differed from the
manual-SV-APF labels. Overall, we observed a disagreement
for 19.9% of the samples. A more detailed analysis for all APF
values separately showed that 29.4% of the samples carrying the
label ‘liquid’ (Liq) in the automatic-SV-APF set did not contain
a liquid according to the human labelers. Hence, a substantial
part of labels used for training does not actually represent the
putative acoustic feature.

4. Study II: The elitist approach for APF
classification of Switchboard

For this study, first an SVM classifier with the Both acoustic pa-
rameters is trained on the 200k frames in the STP data set. Then,
this classifier is used to predict the posterior probabilities for
each frame of the STP training material (following the method
presented in [27]). Finally, we train classifiers on only those
frames for which the probability of the winning class is larger
than a certain threshold. We compare the classification perfor-
mance of five different threshold settings: 0.95, 0.90, 0.70, 0.50
and 0.00 (original training set).

Table 5: Elitist approach: Frame-level F-scores and overall accuracy
for the APF classifiers trained on STP and tested on manual-SV-APF.

Threshold Sil Liq Gli Nas Fri Bur Clo | Acc.
0.00 091 0.67 0.60 0.68 0.57 0.57 0.52|64.5
0.50 091 0.68 0.60 0.66 0.59 0.49 0.53 ] 64.1
0.70 0.90 0.66 0.59 0.66 0.59 0.49 0.53|63.9
090 091 0.67 0.60 0.65 0.539 0.48 0.53|64.1
095 091 0.66 0.60 0.64 0.58 0.47 0.54 | 64.2

Comparing all different threshold settings (see Table 5), the
highest average accuracy (64.5%) is obtained with the original
training set. Thus, there is no increase in classification accuracy
when training the classifiers with a subset of frames. For the
individual APF values, different threshold settings are optimal.
Whereas silence, glide, nasal, and burst do not profit from the
training on a selection of the best frames, other APFs profit from
data selection (liquid, fricative, and closure).

Our results on spontaneous speech do not confirm the find-
ings of Chang et al. [20], who achieved an 8% absolute im-
provement in classification accuracy on read speech (NTIMIT
[28]). Although they used a slightly different APF set, we think
that the difference in performance improvement is mainly due
to the difference in speech style, and to the fact that we did not
remove potentially ambiguous frames from the test. In spon-
taneous speech, there are fewer frames than in carefully read
speech which correspond to a ‘pure’ APF value. Therefore,
the acoustic parameters corresponding to the winning APF are
likely to overlap with the parameters of other APFs.

5. General discussion and conclusions

This paper presents two studies which demonstrate that meth-
ods for APF classification yielding improvements in specifically
designed databases do not automatically do so for real-life data.
The first study presented a set of acoustic parameters with a high
time and a high frequency resolution which were tested on read
(TIMIT) and spontaneous speech (Switchboard). In both cases,
we applied the conventional mapping from phone to APF labels.
The results showed that combining MFCCs derived from a long

window of 25 ms and from a short window of 5 ms both shifted
with 2.5 ms steps (F=0.88) overall outperforms MFCCs derived
from a window of 25 ms shifted with 10 ms (F=0.84). For
spontaneous speech, however, the overall performance dropped
to F=0.66 for Baseline and, what is more, there was no gain
in performance for the new set of acoustic parameters ( Both:
F=0.65) over Baseline.

In the second study, we applied the elitist approach, which
earlier showed a performance improvement of 8% in NTIMIT
[20], to conversational speech material (Switchboard). In our
experiments, however, this method did not improve classifica-
tion performance over all APFs, and for fricatives and closure
by 2%.

Analysis of the labeled material as well as of our exper-
iments with manually and automatically created APF labels
showed that the labeling method has a great impact on classi-
fication performance (Section 3.4). It is questionable whether a
segmentation in terms of phones is equally suitable for the two
speech styles in the first place. Due to the high pronunciation
variability in spontaneous speech (e.g., [26, 29]), a segmenta-
tion in terms of phones is extremely difficult. This difficulty is
reflected in the inter-human labeling disagreement of phonetic
transcriptions (5.6% for read speech vs. 21.2% for spontaneous
speech) [30, 31]. Therefore, the accuracy of the phonetic seg-
mentations in TIMIT is surely higher than in STP. For all these
reasons, we argue that the ‘canonical’ mapping from phone la-
bels to APF labels may still result in relatively good training ma-
terial for read speech, while it does not for spontaneous speech.
This is especially apparent for features that are inherently diffi-
cult to define. For example, confusions of glides and liquids are
much more frequent in spontaneous than in read speech (22.8%
vs. 8.6%). An explanation may be that in American English
word final /I/ tends to be velarized, making the second formant
similar to that of /w/, which we label a glide [32]. Thus, some
confusions are not due to low performance of the classifier, but
rather — and more fundamentally — to inextricable overlap be-
tween the manner features in actual speech.

Performance drops when going from carefully articulated
data (TIMIT) to real-life data (Switchboard) have also been re-
ported for ASR, where for TIMIT word accuracies are typically
> 95%, while for Switchboard they are only in the 50 - 70%
range [13]. Hence, it is not surprising that our classification
performance is overall worse for spontaneous speech than for
read speech. It is surprising, however, that the relative perfor-
mance improvements due to our new methods do not transfer
from read to spontaneous speech.

In speech science, methods are mostly developed and im-
proved using read speech corpora (e.g., TIMIT) and only af-
terwards they are adapted to spontaneous speech. Our studies
suggest that the nature of the application data needs to be taken
into account already when defining the concepts (here: a seg-
mentation in terms of phones) and the basic assumptions of a
method. Applying concepts and methods that were designed
for a different speech style to the application data may fail.
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