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Talk outline

1. Why articulation?

2. Available articulatory data

3. Inversion with Artificial Neural Nets (ANN)

• MLP v’s Mixture Density Network

• Deep ANN models

4. Is this any good though?

• is it an adequate articulatory representation?

• what is the best performance possible?

5. Summary
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Why might articulation be useful?

• An articulatory representation of speech has attractive properties

• relatively slow, smooth

• physical constraints - (e.g. no “jumps”)

• Constraints potentially useful for

• low bit-rate speech coding

• speech synthesis

• speech training

• avatar animation/lip synching

• and of course ASR...
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How to capture speech articulator movements?

• Imaging: Video, Ultrasound, X-ray Cineradiography, MRI 

• Contact: Electropalatography, laryngography

• Point tracking: Mocap, X-ray microbeam, Electromagnetic articulography (EMA)
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Advertisement: mngu0 articulatory corpus

Collaborators =>Collaborators =>
EMA: Phil Hoole (LMU, Germany) 

Simon King (Edinburgh)

MRI: Ingmar Steiner (Saarland, Germany)
Ian Marshall (Edinburgh)
Calum Gray (Edinburgh)

Dental: Laurie Littlejohn (CoreDental, Glasgow)

© Korin Richmond 2013. For individual use only. No copying or reuse of content without prior permission.



mngu0 - EMA (day1) data set

• Carstens AG500 EMA

• Articulators: Upper and lower lips, 
jaw, and three tongue points

• >1,300 phonetically-rich 
utterances

• Good audio
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mngu0 - vocal tract anatomy 

• 3D volume (26 slices, 4mm, 256x256px) 
13 vowels, 16 consonants

• Midsagittal “dynamic” scans, with 16 
cons & 3 vowel contexts (eg. “apa”)

• Acoustic reference recordings

© Korin Richmond 2013. For individual use only. No copying or reuse of content without prior permission.



mngu0 web forum

Website => hub for mngu0 
activity 

Registration required

Default non-commercial 
licence

User uploads strongly 
encouraged
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The inversion mapping problem

Speech production

Inversion mapping
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ANN for the inversion mapping

(thanks to Benigno Uría for animation)
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Inversion mapping - characteristics

“oar” “oar”

• Interesting modelling problem: 

• non-linear

• one-to-many mappings (=ill-posed problem)
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Mixture density network (MDN) suits ill-posed problems
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TMDN Inversion summary

(thanks to Benigno Uría for animation)
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MDN output
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K. Richmond, S. King, and P. Taylor. Modelling the uncertainty in recovering articulation from acoustics. 
Computer Speech and Language, 17:153–172, 2003.
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MDN output - estimating trajectories

K. Richmond. Trajectory mixture density networks with multiple mixtures for acoustic-articulatory 
inversion. International Conference on Non-Linear Speech Processing, NOLISP 2007.
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K. Richmond. Preliminary inversion mapping results with a new EMA corpus. In Proc. 
Interspeech, pages 2835–2838, Brighton, UK, September 2009.

RMS Error
0.99mm
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Improvements with deeper ANN models

• The target - deep multilayer ANN

• To build this network:

• stacking RBM pretraining

• add final layer + optimize

• fine tune all weights with 
standard backpropagation
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Deep MLP test - experiment settings

• Input: PLP features 9 frames (100ms)

• Output: 12 linear units (x,y per articulator) 

• Sigmoidal hidden units

• 1 to 7 hidden layers

• 200, 300, 400 or 1024 units per hidden layer
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Deep MLP results - Error versus depth
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Is this (or any) inversion mapping any good?!

Two central questions:

• Is the articulatory representation adequate?

• What is the best performance we can hope to achieve?
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Adequate articulatory representation?

• Specifically, is EMA enough? 

• Some indications from:

• Tongue contour modelling work

• Synthesis work 

• Articulatory controllable HMM-based synthesis

• Direct articulatory-to-acoustic mapping 
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Tongue contour prediction from limited points
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Fig. 5. Error (RMSE) incurred by the RBF prediction of the
tongue contour wrt the ground-truth contour. Left: RMSE (mm)
for each contour point (averaged over all contours in the dataset)
for different numbers K of landmarks, for the optimal landmark
placement. Right: RMSE (mm) for each contour (averaged over
all contours in the dataset and over all points in the contour), as
a function of the number of landmarks K, for: the worst place-
ment of the landmarks over the combinations we considered
(solid line), the average over all combinations (dashed), and the
optimal placement (dotted, corresponding to the left panel).
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Fig. 6. Like Fig. 5 but for the spline interpolation instead of the
RBF prediction. Note the different scale in the Y axis.

were used in the MOCHA database are quite close to the opti-
mal ones. From Fig. 5 we then estimate that the tongue contours
may be reconstructed from the 3 MOCHA pellets with an error
of around 0.3 mm at each point on the tongue contour. The fact
that the “worst” and “average” lines in Fig. 5 (right) increase
the error by only about 0.1 mm means that, if we cannot place
the landmarks optimally as given by Fig. 7, the following recipe
will yield near-optimal results: place two pellets 2 to 4 mm from
the tongue ends (tip and root, i.e., as far forward and backward
as possible), and place the remaining K − 2 pellets so all K
pellets are regularly spaced.

5. Conclusion

We have shown that realistic tongue contours (with errors well
below 0.4 mm) may be predicted from as few as 3–4 landmarks
(optimally located on the tongue) using a nonlinear mapping
learned from ultrasound data. This information may be used to
determine the optimal number and locations of pellets for EMA
and X-ray microbeam technology. Although our dataset was
small and limited to one speaker, the results demonstrate the ap-
proach is much more successful than spline interpolation, and
quantify the extent to which the EMA/X-ray data is a good rep-
resentation of the tongue. Future work will involve adapting the
model to a different speaker for which we have no (or very lit-
tle) data; animating tongue contours for vocal tract visualisation
of EMA/X-ray databases; and augmenting the tongue represen-
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Fig. 7. Optimal location of K landmarks (for K = 2, 3, 4, 5)
depicted on a sample tongue contour (the tip is to the right and
the root to the left). The bottom contour shows the approximate
location of the 3 pellets used in the MOCHA database.

tation in data-driven methods for articulatory speech synthesis
and articulatory inversion. This will improve our understanding
of the limitations of current articulatory databases for articula-
tory inversion, articulatory synthesis and vocal tract visualisa-
tion. The method is also applicable to predicting the 3D shape
from landmarks if 3D ground truth is available.
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Fig. 5. Error (RMSE) incurred by the RBF prediction of the
tongue contour wrt the ground-truth contour. Left: RMSE (mm)
for each contour point (averaged over all contours in the dataset)
for different numbers K of landmarks, for the optimal landmark
placement. Right: RMSE (mm) for each contour (averaged over
all contours in the dataset and over all points in the contour), as
a function of the number of landmarks K, for: the worst place-
ment of the landmarks over the combinations we considered
(solid line), the average over all combinations (dashed), and the
optimal placement (dotted, corresponding to the left panel).
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Fig. 6. Like Fig. 5 but for the spline interpolation instead of the
RBF prediction. Note the different scale in the Y axis.

were used in the MOCHA database are quite close to the opti-
mal ones. From Fig. 5 we then estimate that the tongue contours
may be reconstructed from the 3 MOCHA pellets with an error
of around 0.3 mm at each point on the tongue contour. The fact
that the “worst” and “average” lines in Fig. 5 (right) increase
the error by only about 0.1 mm means that, if we cannot place
the landmarks optimally as given by Fig. 7, the following recipe
will yield near-optimal results: place two pellets 2 to 4 mm from
the tongue ends (tip and root, i.e., as far forward and backward
as possible), and place the remaining K − 2 pellets so all K
pellets are regularly spaced.

5. Conclusion

We have shown that realistic tongue contours (with errors well
below 0.4 mm) may be predicted from as few as 3–4 landmarks
(optimally located on the tongue) using a nonlinear mapping
learned from ultrasound data. This information may be used to
determine the optimal number and locations of pellets for EMA
and X-ray microbeam technology. Although our dataset was
small and limited to one speaker, the results demonstrate the ap-
proach is much more successful than spline interpolation, and
quantify the extent to which the EMA/X-ray data is a good rep-
resentation of the tongue. Future work will involve adapting the
model to a different speaker for which we have no (or very lit-
tle) data; animating tongue contours for vocal tract visualisation
of EMA/X-ray databases; and augmenting the tongue represen-
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Fig. 7. Optimal location of K landmarks (for K = 2, 3, 4, 5)
depicted on a sample tongue contour (the tip is to the right and
the root to the left). The bottom contour shows the approximate
location of the 3 pellets used in the MOCHA database.

tation in data-driven methods for articulatory speech synthesis
and articulatory inversion. This will improve our understanding
of the limitations of current articulatory databases for articula-
tory inversion, articulatory synthesis and vocal tract visualisa-
tion. The method is also applicable to predicting the 3D shape
from landmarks if 3D ground truth is available.
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Fig. 4. Selected frames comparing the true contour (cyan) and the contours estimated by the spline interpolation (green) and our RBF
prediction (red), for K = 3 landmarks (yellow dots). Frame 754 shows indicative 10 mm scale bars.

the RBF overlaps almost perfectly with the true contour, so
the latter is barely visible. The spline contour often deviates
significantly from the true one. For example, since the spline
behaves like an elastic bar, it is impossible for it to predict a
sharp valley or hump between two adjacent landmarks (frames
97, 205, 553). When the landmarks are aligned (e.g. frames
428, 754) the spline naturally adopts a straight line shape,
which is physically infeasible for the tongue, and different
indeed from the true contour. In all these situations the RBF
prediction works very well. The advantage of the prediction
based on a training set is largest when extrapolating beyond the
end landmarks, near the root or the tip of the tongue.

Optimal number and location of the landmarks In this ex-
periment, we used database db2. In order to determine the opti-
mal location of K landmarks, we would need to fit a predictor to
each of the

`

P
K

´

combinations (where our contours have P = 24
points). We limit the computational cost involved as follows.
(1) By using a RBF network with fixed basis function centres
and width, we only need to estimate the linear weights W for
each combination. (2) We ignore unreasonable arrangements of
landmarks by dividing the contour into K consecutive segments
and constraining each landmark to select points from one; for
example, for K = 3, landmarks 1, 2 and 3 can only select points
1–8, 9–16 and 17–24, respectively. This prevents landmarks
from being all very close, or very far from each other, which un-
doubtedly would lead to a much worse prediction. This resulted
in 145, 513, 1297, 2501 combinations for K = 2, 3, 4, 5, resp.
The number of combinations for K = 6 (4900+) or higher re-
quired too much computer time for this study. For each combi-
nation, we performed 5-fold cross-validation to choose the opti-
mal parameters and reported the averaged reconstruction errors.
The optimal parameters of the RBF network (M, σ) (number of
BFs and width in mm) were:

K K = 2 K = 3 K = 4 K = 5
(M, σ) (410, 19) (400, 13) (410, 19) (490, 19)

We report the root-mean-square error (RMSE) in mm for each

contour point i = 1, . . . , P : ( 1
N

PN
n=1 (y(n)

i − ŷ(n)
i )2)1/2 in

Fig. 5 (left), where n is the index of the contour in the dataset
(with N = 6 000 contours for db2), and yn and ŷn are the true
and reconstructed tongue contours, respectively. Fig. 5 (right)
reports the RMSE averaged over the P contour points.

Fig. 5 (left) shows that the prediction errors at each con-
tour point are roughly symmetric around the fixed landmarks,
with the lowest (zero) error at the landmarks themselves, and
the highest error approximately in the midpoint between land-
marks, or at the ends of the contour. The errors are largest at the
tip of the tongue, consistent with its movement being the most
complex. From Fig. 5 (right), using only 2 landmarks yields
an optimal error of 0.6 mm, while using 3 yields less than 0.3
mm and 4 yields 0.2 mm. Using more landmarks yields dimin-
ishing returns; it is also practically harder to attach that many
pellets to the tongue. The line labelled “worst” is actually not
much worse than the optimal, because we have ruled out pel-
let arrangements that would indeed yield a far larger error (e.g.
having all pellets next to each other).

For the spline interpolation, we predicted the contour y by
considering a uniform grid of P locations along the X axis
(with known Y values for K points) and applying to it the spline
function. Consistent with the previous section, the spline inter-
polation (Fig. 6) is always much worse (by an order of magni-
tude) than the RBF prediction, although its error improves as K
increases.

Fig. 7 shows the optimal location of the landmarks for
K = 2 to 5. The landmarks are roughly equidistant along
the tongue contour, but somewhat closer to each other near the
tongue tip, consistent with the fact that the tongue tip shows
more complex movements than the rest of the tongue. The end
landmarks are close to the contour ends (tip and back), but not
right at the ends. The scale bar allows to determine the posi-
tions in mm, and (after rescaling by the total tongue length) one
can determine the approximately optimal placement for a dif-
ferent speaker. The approximate locations of the 3 pellets that
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C. Qin, M. Carreira-Perpiñán, K. Richmond, A. Wrench, and S. Renals. Predicting 
tongue shapes from a few landmark locations. In Proc. Interspeech, 2008.

• Database of hand-labelled ultrasound images for 
training + testing data

• RBF used to predict tongue contour from varying 
number of points on contour (e.g. EMA locations)

• Also evaluate optimal “EMA” point placement 

• For 3 tongue points, average error = 0.3mm
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Articulatorily controllable synthesis

• Aim => To change speech produced by hidden Markov 
model-based speech synthesiser using articulatory controls.

  Z. Ling, K. Richmond, J. Yamagishi, and R. Wang. Integrating articulatory features into HMM-based parametric speech synthesis. 
IEEE Transactions on Audio, Speech and Language Processing, 17(6):1171-1185, August 2009.

  Z. Ling, K. Richmond, and J. Yamagishi. Articulatory control of HMM-based parametric speech synthesis using feature-space-
switched multiple regression. Audio, Speech, and Language Processing, IEEE Transactions on, 21(1):207-219, 2013.
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Motivation

• Pros:

• Flexible (parametric rather than concatenative)

• Trainable (data-driven rather than expert-intensive rules)

• Adaptable (speaker, style, emotion...)

• Cons:

• “Black box”

• Modification requires more data

• So, aim is to gain even more flexible control over synthesis

Interpolate:
normal->angry

Hidden Markov model-based synthesis is state-of-the-art.
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Introducing articulation into HMM synthesis model
(First attempt)

• Model joint distribution of acoustic and 
articulatory parameters

• Acoustic distribution is dependent on 
articulation

• Dependency = linear transform 

• Aj is (tied) linear transform matrix for 
state j...

• ... = Global piecewise linear mapping

• No loss of quality

• NOTE: can use arbitrary function to 
modify yt => articulatory control!
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Change model tongue height => change vowel

Raise tongue (cm)
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Perceptual test results

• 20 listeners, lab conditions, results pooled across speakers and words
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•Z. Ling, K. Richmond, J. Yamagishi, and R. Wang. Integrating articulatory features into HMM-based 
parametric speech synthesis. IEEE Transactions on Audio, Speech and Language Processing, 17(6):
1171-1185, 2010 IEEE Best Young Author paper award, August 2009.
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Direct articulatory-acoustic mapping

• “Articulatory synthesis” - but data-driven (no physiological model)

• Nonlinear regression from articulation to acoustic synthesis parameters

• Some examples of simple baseline system (MLP mapping)

• Input = EMA+Gain+F0

• Output = LSF vocoder parameters

• Training data = 720 utts of mngu0 day2 EMA

“However, that optimism now seems premature.”

“But this yard.”

“There is a huge amount of data overload.”
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How good is an inversion mapping?

Inversion mapping methods standardly evaluated using RMS error and 
correlation. Is this good enough?

• Zero RMSE and perfect correlation will not happen

• Non-uniqueness (c.f. “(non-)critical” articulators ignored

• No indication how close optimal inversion is

Question: Can “task-based” evaluation add new insight?

• Explore with task = articulatory controlled TTS

• Compare standard articulatory error measures with error calculated in the 
*acoustic* domain

Korin Richmond, Zhenhua Ling, Junichi Yamagishi, and Benigno Uría. On the evaluation of 
inversion mapping performance in the acoustic domain. In Proc. Interspeech, 2013.
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Articulatory-controlled HMM-based TTS

“Feature-space-switched Multiple Regression HMM” (FSS-MRHMM)

On the Evaluation of Inversion Mapping
Performance in the Acoustic Domain

Korin Richmond1, Zhenhua Ling2, Junichi Yamagishi1 and Benigno Uría1

1) Centre for Speech Technology Research, School of Informatics, University of Edinburgh 
2) National Engineering Laboratory of Speech and Language Information Processing, USTC, Hefei, P.R. China

Z.-H. Ling, K. Richmond, and J. Yamagishi, “Articulatory control of HMM-based parametric speech syn-
thesis using feature-space-switched multiple regression,” IEEE TASLP, vol. 21, no. 1, pp. 207–219, 2013.
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2. Articulatory controlled HMM-based TTS

3. Experiment
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









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4. RMS error: comparison of acoustic and articulatory results

Inversion mapping methods are standardly evaluated using
articulatory RMS error and correlation - is this sufficient?...

• No indication how far away “optimal inversion” is
• Non-uniqueness (c.f. “(non-)critical” articulators) ignored

Question: Can “task-based” evaluation add new insight?
• Explore with articulatory controlled HMM-based synthesis
• Compare standard articulatory error measures with error 

calculated in the synthesised *acoustic* domain 

1. Motivation - inversion mapping evaluation

Speech production

Inversion mapping

Inversion methods testedInversion methods testedInversion methods tested
Linear Simple linear projection, with 

1,2,4,6,8 or 10 acoustic context 
frames

Code-
book

                 





























KD-Tree to find 5000 candidates 
each frame, then Viterbi search 
with unweighted Euclidean target 
and join costs

MLP 2 22 mixture
model

network
neural

x x

E(t|x) p(t|x)

_ mµ _ mµ_ mµ1 per channel: 1 hidden layer, 100 
units with tanh activation function, 
10 acoustic context frames (alter-
nate frames selected)

TMDN
2 22 mixture

model

network
neural

x x

E(t|x) p(t|x)

_ mµ _ mµ_ mµ

1 per channel: 1 hidden layer, 100 
units tanh activation function, 10 
context frames, [1,2 or 4] GMM 
components, static/∆/∆∆ PDFs + 
MLPG

+ Filter 
Output additionally smoothed: 2nd 
order Butterworth filter, 10Hz low-
pass cutoff

Method
• Evaluate a range of inversion methods using:

1. standard articulatory RMS error and correlation
2. acoustic RMS error and listening test using articulator 

controlled text-to-speech synthesiser
• NOTE: aim is not to develop novel inversion method!
• Importantly, a range of inversion performance is required here

Data Processing

mngu0 
EMA 

(day1)

• 1263 prompts, 3D EMA (AG500), one British male, 
single session, 6 coils (lips, jaw, 3 tongue)

• Acoustics -> LSF (STRAIGHT), order 40+gain, 
5msec frameshift (= EMA sample rate)

• Dataset sizes (num. utterances):  Validation (63), 
Test (63), Train (1137)

• All data z-score normalized (not for FSS-MRHMM)
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6. Conclusions

     
 

  

  

  

  

  

  

 

 

 

Two questions addressed:

1. Can acoustic task-based evaluation give useful info?
• YES!
• Interesting differences from articulatory RMSE...

2. Can we get insight into “optimal inversion” performance?
• MLP+LPFiltering performed as well as natural EMA...
• ...BUT we cannot yet claim this is “optimal inversion”
• Simply, sufficient inversion for this task
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5. Acoustic evaluation results: listening test

• 30 paid native British English listeners, lab conditions
• 9 preference tests, each with 10 pairs of stimuli
• Results generally like LSF RMSE results
• No EMA < codebook < [MLP,linear10, TMDN] < Natural EMA
• Some LSF RMSE differences are imperceptible
• MLP+Filter ≅Natural EMA !!“Feature-space-switched Multiple Regression HMM (FSS-MRHMM)”

• Spectral distributions (xt) depend on state 
+ external articulation (yt)

• Separate Single GMM for transform tying 
(matrices A below)

• Context feature tailoring

1tq  tq j 1tq 

1tx tx 1tx
. . .

1tm tm k 1tm

, }j j 

kA

( ) k t

. . .

1ty ty 1ty

bj(xt|yt) =
MX

k=1

⇣k(t)N (xt;Ak⇠t + µj ,⌃j)

state-dependent acoustic 
mean and variance

transform matrix for 
GMM component k

expanded articulatory 
vector [yT

t , 1]
T

probability for (separate) GMM 
component mt = k given yt

Flowchart explaining use of 
the FSS-MRHMM to evalu-
ate natural and estimated 
articulator trajectories

Standard articulatory measures:

• Codebook < linear < MLP ≤ TMDN

• +Filter improves all results, except TMDN

• Reasonable spread of performance

• NOTE: This is not a fair comparison of methods!

Acoustic (LSF RMS error) measure:

• Synthesise 63 test utts, calculate LSF error

• Perceptually weighted Euclidean distance 

• Some interesting differences

• MLP+Filter much better than TMDN

• TMDN appears worse than linear+Filter

  Z. Ling, K. Richmond, and J. Yamagishi. Articulatory control of HMM-based parametric speech synthesis using feature-space-
switched multiple regression. Audio, Speech, and Language Processing, IEEE Transactions on, 21(1):207-219, 2013.
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Experiment method

Test a range of inversion methods 
using:

1. articulatory evaluation using 
standard RMS error and correlation 

2. acoustic evaluation using an 
articulator controlled text-to-speech 
synthesiser:

i.  *acoustic* RMS error

ii. human perceptual test


























articulatory synthesis flowchart:
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Data processing

• Day 1 EMA set of mngu0 corpus (for TTS + inversion methods)

• one British male, single session, 1263 prompts total

• 3D EMA (AG500), 6 coils (lips, jaw, 3 tongue)

• Acoustics -> LSF (STRAIGHT), order 40+gain, 5msec frameshift (= EMA 
sample rate)

• Dataset sizes (num. utterances): Validation (63), EMA Test (63), Train (1137)

• All data z-score normalised (not for FSS-MRHMM)
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4 mapping methods tested (+smoothed versions)

Inversion methods testedInversion methods testedInversion methods tested
Linear Simple linear projection, with 1,2,4,6,8 or 10 

acoustic context frames

Codebook KD-Tree to find 5000 candidates each frame, 
then Viterbi search with unweighted Euclidean 
target and join costs

MLP 1 per channel: 1 hidden layer, 100 units with 
tanh activation function, 10 acoustic context 
frames (alternate frames selected)

TMDN 1 per channel: 1 hidden layer, 100 units tanh 
activation function, 10 context frames, [1,2 or 4] 
GMM components, static/∆/∆∆ PDFs + MLPG

+ Filter 
Output additionally smoothed: 2nd order 
Butterworth filter, 10Hz lowpass cutoff
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Standard articulatory error measure results
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• Codebook < linear < MLP ≤ TMDN
• +Filter improves all results, except TMDN
• Reasonable spread of performance
• NOTE: This is not a fair comparison of methods!
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Acoustic evaluation results: LSF RMSE
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• Synthesise 63 test utts, calculate LSF error
• Perceptually weighted Euclidean distance 
• Some interesting differences

• MLP+Filter much better than TMDN
• TMDN appears worse than linear+Filter
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Acoustic evaluation: listening test results

     
 

  

  

  

  

  

  

 

 

 

• 30 paid native British English 
listeners, lab conditions

• 9 preference tests, each with 
10 pairs of stimuli

• Results generally like LSF 
RMSE results

• Some LSF RMSE differences 
are imperceptible

• MLP+Filter ≅Natural EMA !!

No EMA < codebook < [MLP,linear10, TMDN] < Natural EMA
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Conclusions from this study

Two questions addressed: 

1. Can acoustic task-based evaluation give useful info?

• YES!

• Interesting differences from standard articulatory RMSE and correlation

2. Can we get insight into “optimal inversion” performance?

• MLP+LPFiltering performed as well as natural EMA...

• ...BUT we cannot yet claim this is “optimal inversion”

• Simply, sufficient inversion for this task
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Summary of talk

On the inversion mapping:

• Shown ANNs are a viable model for inversion mapping

• Deep ANN models give the state-of-the-art performance (probably)

• Given some indications of level of “information” in EMA data

• This is far from conclusive... open question up for debate and further study

• Raised question of “optimal inversion”

• Some interesting results - RMSE and correlation don’t give full picture

• Found invertedEMA = naturalEMA, but too early to judge if this is “optimal”
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Thanks for listening!
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