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ABSTRACT

Three research prototype speech recognition systems are de-
scribed, all of which use recently developed methods from
artificial intelligence (specifically support vector machines,
dynamic Bayesian networks, and maximum entropy classifi-
cation) in order to implement, in the form of an automatic
speech recognizer, current theories of human speech per-
ception and phonology (specifically landmark-based speech
perception, nonlinear phonology, and articulatory phonol-
ogy). All three systems begin with a high-dimensional multi-
frame acoustic-to-distinctive feature transformation, imple-
mented using support vector machines trained to detect and
classify acoustic phonetic landmarks. Distinctive feature
probabilities estimated by the support vector machines are
then integrated using one of three pronunciation models:
a dynamic programming algorithm that assumes canoni-
cal pronunciation of each word, a dynamic Bayesian net-
work implementation of articulatory phonology, or a dis-
criminative pronunciation model trained using the methods
of maximum entropy classification. Log probability scores
computed by these models are then combined, using log-
linear combination, with other word scores available in the
lattice output of a first-pass recognizer, and the resulting
combination score is used to compute a second-pass speech
recognition output.

1. INTRODUCTION

Humans and machines recognize consonants on the basis of
acoustic cues present just after consonant release, and just
before consonant closure; acoustic spectra during the clo-
sure interval itself provide little phonetic information [1].
Stevens has proposed [2] that consonant closures and re-
leases, as well as syllable peaks and dips, compose a series
of “acoustic landmarks” around which human and auto-
matic speech recognition may be organized. Detection of
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these landmarks provides two sets of cues to a human or
automatic speech recognizer: (1) detected manner-change
landmarks specify the manner of articulation (stop, nasal,
fricative, glide, vowel) of the phonemes, and (2) manner-
change landmarks can be used to synchronize classifiers that
seek to identify place and voicing.

Conversational telephone speech is characterized by vari-
able pronunciation. Many common pronunciation variants
are generated by the reduction, overlap, and assimilation of
distinctive features, and can thus be compactly represented
in a landmark-based speech recognition model. Distinctive-
feature-based models may be divided into roughly two cat-
egories, depending on whether the structure they impose
is primarily production-oriented or primarily perception-
oriented. The theory of articulatory phonology [3] is pri-
marily production-oriented: pronunciation variability is mod-
eled as asynchrony and overlap among articulatory ges-
tures, and is constrained by the structure of the vocal tract.
Stevens et al. [2] proposed a model that could be considered
perception-oriented: in their model, the distinctive features
in each word are either “modifiable” or “required,” where
the difference between these two categories is partly deter-
mined by the degree to which each feature disambiguates
the word from phonemically similar or confusable words.

This paper describes three probabilistic landmark-based
speech recognizers, developed at the workshop (WS04) at
the Johns Hopkins Center for Language and Speech Pro-
cessing. In all three systems, a high-dimensional acous-
tic feature vector is transformed into a vector of posterior
probability estimates by support vector machines (SVMs)
trained to detect landmarks, and to classify distinctive fea-
tures. The first system uses a dynamic programming al-
gorithm to combine SVM-computed acoustic probabilities,
in order to estimate the probability that a word has been
produced using its canonical dictionary pronunciation. The
second system uses a dynamic Bayesian network to repre-
sent the asynchronous, independently reduced articulatory
gestures posited by articulatory phonology. The third sys-
tem uses the maximum entropy method (ME) to determine
which of the distinctive features in each word are required to
disambiguate speech recognizer output, and then computes
a word score by considering SVM outputs corresponding
only to the required distinctive features.

SVMs are trained and tested using NTIMIT and the
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phonetically transcribed portion of Switchboard. Half of
the talkers in the transcribed Switchboard set are used to
train SVMs, and half to test. Rescoring systems are tested
using the development test data from the 2003 NIST rich
text transcription task (RT03). The evaluation task for pro-
nunciation models is lattice rescoring using word lattices
generated by the SRI speech recognizer; word lattices for
the Hub-5 training and evaluation speech data were also
provided by BBN. Pronunciation model output probabil-
ities are combined with the HMM-based acoustic model
scores and N-gram based language model scores using a log-
linear combination algorithm. Different experiments used
three different methods to set the scaling coefficients for log-
linear combination: scaling coefficients are either set heuris-
tically, or using amoeba search [4], or using a novel discrim-
inative exponential model designed to minimize word error
rate. Similarly to the approach proposed in [5], the expo-
nential model is conditioned on context via a set of features,
whose weights are estimated using ME. The model tested
here differs from that proposed in [5] in that it targets word
error rate (WER) by working within the framework of con-
fusion networks, a compact representation of hypotheses in
the lattices as described in [6]. In the algorithm proposed
here, log linear weight estimation is posed as ME estima-
tion of the conditional exponential model for the probability
that a hypothesized word in a confusion network is the refer-
ence. Features to represent the confusion network context
included normalized posterior rank (rank/#words), origi-
nal posterior, landmark pronunciation model scores (DBN
scores, discriminative pronunciation model scores), original
acoustic and language model scores, duration, number of
phones, relative confusion network position in the lattice,
confusability penalty, and function word set membership.

Accuracy of the SVMs improved steadily throughout
the workshop. Word error rate (WER) reductions were
achieved on training data, and on a three-speaker subset
of the development test data, but no statistically signifi-
cant WER reductions were achieved on the complete RT03
development test set.

2. LANDMARK DETECTION AND
CLASSIFICATION

All systems described in this paper observe a composite
acoustic feature vector including the following features: en-
ergy, spectral tilt, spectral compactness, MFCC, formant
frequency, amplitude, and bandwidth [7], knowledge-based
acoustic features designed to be informative about the phono-
logical distinctive features [8], and the “rate-scale” audi-
tory cortical features [9]. All of these features are mea-
sured once per 5 ms, except that energy, spectral tilt, and
spectral compactness are measured once per millisecond.
Each SVM is trained to compute a real-valued linear or
nonlinear discriminant function, gj(Xt), where j is the in-
dex of the distinctive feature, and Xt is the concatenation
of 4 to 17 acoustic feature frames sampled in the vicin-
ity of frame t. The discriminants are mapped to pseudo-
posteriors using a histogram. Histogram counts are trained
using a corpus with equal numbers of positive and neg-
ative examples (q(dj = +1) = 0.5), so that the pseudo-
posterior q(dj |gj(X)) is proportional to the true likelihood

p(gj(X)|dj). Posterior probabilities of manner features are
computed independently of the settings of all other dis-
tinctive features. Posterior probabilities of place and voic-
ing features are computed using context-dependent SVMs,
meaning that a bank of SVMs and a corresponding bank of
histograms are trained to estimate p(dj(t) = 1|Xt, L(t)) for
every possible value of L(t), where L(t) specifies that t is
a landmark of a particular type (stop release, stop closure,
fricative release, etcetera).

Several hundred SVMs were trained, using linear and
RBF kernels; 72 were selected for use in the pronuncia-
tion models. Acoustic feature inputs were selected sepa-
rately for each of the 72 classifiers, but generally included
between 3 and 30 acoustic features for manner classifica-
tion, and between 500 and 2000 acoustic features for place
or voicing classification. It was discovered that place of ar-
ticulation classifiers typically improve with every increase
in the acoustic feature vector dimension, provided that the
new features are not completely determined by existing fea-
tures, and provided that the dimension of the acoustic fea-
ture vector does not exceed roughly 17% of the number
of frames in the training corpus. Prior to the start of the
workshop, classification error rates of most manner features
were already at a very low level [10], but classification error
rates of most place and voicing features were inadequate
for speech recognition purposes. During the course of the
workshop, classification error rates of all place and voicing
features fell by 10-50%, through a combination of improved
selection of acoustic features and improved classifier train-
ing methods. Error of nasal place classifiers, for example,
fell by 49%; error rate of stop place classifiers fell by 21%.

The landmark-based recognition paradigm allowed us
to explore phonetic distinctions that are ignored by most
English-language speech recognizers. In the Switchboard
transcriptions, for example, nasalized vowels were often found
in place of deleted nasal phonemes. We reasoned, therefore,
that the pronunciation model should be given the ability to
learn that a nasalized vowel is a high-probability substitute
for a nasal consonant, and that therefore, it would be use-
ful to develop a detector for nasalized vowels. Two types of
nasalized vowel detectors were developed: a classifier that
distinguished all nasalized vowels from all non-nasalized
vowels, and a bank of vowel-dependent nasalization detec-
tors. Vowel nasalization proved difficult to classify accu-
rately, but reasonably successful classifiers were trained for
four vowels: /ey/ (81% accuracy, in a test set with 50%
nasal vowels), /iy/ (76%), /ae/ (75%), and /ao/ (73%).

Landmarks were detected by a dynamic programming
algorithm that combines information about manner class
observation probabilities, together with a manner-class prob-
ability model, in order to reduce the number of false land-
mark insertions [10]. SVM-based classifiers for the man-
ner features were applied in each frame of speech. SVM-
computed probabilities were combined with a segmentation
algorithm to obtain the manner change landmarks - frica-
tive closure and release, sonorant consonant closure and
release, vowel nucleus, syllabic dip, silence start and end,
stop burst and vowel onset.

The dynamic programming algorithm is itself a speech
recognizer, and was used in lattice rescoring experiments.
Probability of a word in this method is computed as P (U |O) =
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P (L|O)P (U |LO), where U is a sequence of bundles of dis-
tinctive features or the corresponding sequence of phones,
L is the canonical sequence of landmarks and O is the se-
quence of all acoustic observations. Good phoneme align-
ment was achieved using this method, but no WER reduc-
tion was achieved, apparently because few words in the con-
versational speech corpus are adequately modeled by their
canonical landmark sequences.

3. RESCORING USING A GENERATIVE
FEATURE-BASED PRONUNCIATION MODEL

A hybrid SVM-DBN landmark-based speech recognizer was
created by combining the generative pronunciation model
of [11] with the SVM acoustic observation probabilities de-
scribed in Sec. 2. In the generative pronunciation model,
hidden variables in a DBN represent features based on the
tract variables of [3], including the locations and/or de-
grees of opening of the lips, tongue tip, and tongue body,
and the states of the glottis and velum. Pronunciations are
generated by mapping a word’s baseform pronunciations to
trajectories, allowing the tract variables to go through their
trajectories asynchronously (while enforcing some soft syn-
chrony constraints, encoded as distributions over degrees of
asynchrony), and allowing each feature’s surface value to
stray from its underlying target value (typically due to un-
dershoot) with some probability. The use of a DBN allows
us to take advantage of the natural factorization of the large
state space.

In order to incorporate the likelihoods from the SVMs,
we used the Bayesian network construct of soft evidence.
For each distinctive feature dj , a “dummy” variable ĝj is
created, whose value is always 1 and whose distribution
is constructed so that P (ĝj = 1|dj) is proportional to the
acoustic likelihood p(gj(X)|dj) computed by the SVM. Since
the pronunciation model uses a different set of features from
the SVMs, we used a deterministic mapping from articula-
tory to distinctive features, e.g., sonorant = 1 whenever
the glottis is in the voiced state and either the lip and
tongue openings are narrow or wider or there is a complete
lip/tongue closure along with an open velum.

Since place and voicing SVMs are trained only in certain
contexts (p(dj |Xt, L) is trained only using frames aligned
with landmarks of type L), it is nonsensical to use all SVMs
in all frames. For now, our solution is to rescore in two
passes: The manner probabilities, which are interpretable
in all frames, are used to obtain a manner segmentation; the
DBN is then used along with the remaining SVM outputs to
compute a score conditioned on the manner segmentation,
using each SVM only in its appropriate context.

As a way of qualitatively examining the model’s be-
havior, we can compute a “forced alignment” for a given
waveform, i.e. the most probable values of all of the DBN
variables given the word identities and the SVM outputs.
Observation of forced alignments was used to correct prob-
lems in the integration of SVM scores into the DBN, and to
evaluate the success of pronunciation modeling. It was ob-
served that the system often produces the intuitively correct
explanation for pronunciation reduction phenomena. For
example, in one reduced utterance of the phrase “I don’t
know”, the system was able to correctly recognize that both

System setup WER

Baseline 27.7

SVM-EBS-DBN 27.3
SVM-DBN-DBN 27.3
SVM-DBN-DBN, high-accuracy SVMs only 27.2

Table 1. Word error rates (%) in lattice rescoring experiments

on a three-speaker (1988-word) subset of the RT03 development

set. SVM-EBS-DBN refers to the case in which the event-based

system (EBS) of [10] is used to do the manner segmentation; in

the SVM-DBN-DBN case, the manner segmentation was done

by the DBN using only the manner distinctive features.

the /d/ and the /n t n/ sequence were produced essentially
as glides, i.e., although the underlying setting of the tongue
tip variable is TT-OPEN=CL (“closed”), the observed value is
ActualTT-OPEN=NA (“narrow”).

Table 1 shows a sample of the word error rates ob-
tained with this system on a three-speaker subset of the
RT03 development set. All experiments were done using
GMTK [12]. Because of time constraints during the work-
shop, we have not yet run all of the variants of the system
on the full development or evaluation sets. For the only
case in which we have a full development set result (the
SVM-EBS-DBN case), there is no change from the baseline
WER.

4. DISCRIMINATIVE RESCORING USING
LANDMARKS

As an alternative to the generative pronunciation model,
this section describes a model in which landmark informa-
tion explicitly discriminates between confusable words in
the baseline word lattice. The word lattice is first converted
into a confusion network, as described in [6]. For each
confusion set, words are then converted into a landmark-
based representation suitable for training a maximum en-
tropy (ME) discriminative classifier. The ME model re-
quires a fixed-length input vector. Since words have differ-
ent numbers of landmarks, we achieve a fixed-length rep-
resentation by encoding them in terms of the frequencies
of binary precedence and overlap relations between land-
marks, e.g., “vowel” precedes “sonorant consonant” (V ≺
SC), and “sonorant consonant” overlaps with “+blade”
(SC ◦ +blade). Not all possible precedence and overlap
relations actually occur; in practice, the total number of re-
lations is 40-60, depending on the specific set of landmarks
used. The frequency of each relation within a word is en-
tered into the respective element of the vector; the entire
vocabulary can thus be represented as a matrix, similar to
the word-frequency encoding of documents in Information
Retrieval.

An ME model is trained to distinguish among the bi-
nary relationship vectors that correspond to the words in
a particular confusion set. The features in the ME model
are the landmarks relations described above. Ideally, vec-
tors should be derived from a large training set consisting
of time-aligned word and landmark transcriptions. Since
such a training set was not available to us we used the
word entries in a landmark-based pronunciation dictionary
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sneak speak
SC ◦ +blade 2.47 SC ◦ +blade -2.47
FR ◦ SC 2.47 FR ≺ SC -2.47
FR ≺ SIL -2.11 FR ≺ SIL 2.11
SIL ≺ ST -1.75 SIL ≺ ST 1.75
.....

Fig. 1. Example of landmark weights to distinguish be-
tween sneak and speak. The highest weights are assigned to
sonorant consonant overlapping with +blade (indicating the
nasal /n/), and to fricative preceding sonorant consonant,
indicating the /sn/ sequence.

as training samples. This dictionary (converted from an ini-
tial phone-based representation) includes the pronunciation
variants used by the first-pass system, and uses a number
of phonetic rules to derive a fine-grained landmark-based
representation of pronunciation variants.

The trained maximum-entropy model assigns weights
to each landmarks relation; the landmarks are then ranked
according to the magnitude of each weight and the top N of
these are selected. These are then passed back to the land-
mark detection module, together with the time boundaries
of the words in question. The detection module performs a
search for these landmarks within the time constraints spec-
ified and returns their combined log-likelihood. The weights
of a trained model to distinguish between sneak and speak
are shown in Figure 1.

Experiments were carried out on the RT03 development
set. The baseline word error rate, obtained by selecting the
highest scoring hypothesis in each confusion network, was
24.1%. Oracle word error rate varied between 22.0% and
23.9%, depending on the number of words retained in each
confusion set (22.0% oracle WER was achieved by trimming
each confusion set to five words, and counting homophones
as correct; 23.9% oracle WER was achieved by trimming
each confusion set to two words). Rescoring was done by a
weighted combination of the baseline posterior probabilities
and the normalized acoustic landmarks scores (weights 0.8
and 0.2, respectively). A number of variants of this tech-
nique were tested, including different weighting schemes for
broad classes vs. place features, and a number of different
methods for selecting landmark scores. Several methods
resulted in a small reduction in the total number of word
errors, but this number never totalled more than 0.05% of
the WER denominator.

5. CONCLUSIONS

Methods described in this paper have resulted in WER re-
ductions on an arbitrarily selected three-speaker subset of
the target corpus, but no method applied to the entire cor-
pus has resulted in a statistically significant WER reduc-
tion. Despite the current lack of a WER reduction, sev-
eral intermediate evaluation results support the argument
in favor of further research along these lines. Rapid and
continuous gains in phonetic classification accuracy were
achieved, relative to the start of the workshop. The SVM
was proven capable of learning classification boundaries in

a very high-dimensional observation space, typically on the
order of 500 to 2000 observation dimensions. The DBN was
shown capable of incorporating soft evidence computed by
an SVM, and of using the available soft evidence to cor-
rectly transcribe consonant reductions.

Automatic classification of acoustic landmarks requires
an algorithm capable of learning classification boundaries
in a high-dimensional observation space; SVMs satisfy the
requirement. Probabilistic modeling of articulatory asyn-
chrony requires an algorithm capable of learning the joint
distributions of many simultaneous hidden variables; DBNs
satisfy the requirement. This paper has demonstrated that
it is possible to build an automatic speech recognizer that
learns, from data, some of the information structures ap-
parently used in human speech perception and speech pro-
duction.
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