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Abstract
This paper describes an approach to efficiently construct,
and discriminatively train, a weighted finite state transducer
(WFST) representation for an articulatory feature-based model
of pronunciation. This model is originally implemented as a
dynamic Bayesian network (DBN). The work is motivated by a
desire to (1) incorporate such a pronunciation model in WFST-
based recognizers, and to (2) learn discriminative models that
are more general than the DBNs. The approach is quite general,
though here we show how it applies to a specific model. We
use the conditional independence assumptions imposed by the
DBN to efficiently convert it into a sequence of WFSTs (fac-
tor FSTs) which, when composed, yield the same model as the
DBN. We then introduce a linear model of the arc weights of
the factor FSTs and discriminatively learn its weights using the
averaged perceptron algorithm. We demonstrate the approach
using a lexical access task in which we recognize a word given
its surface realization. Our experimental results using a phonet-
ically transcribed subset of the Switchboard corpus show that
the discriminatively learned model performs significantly better
than the original DBN.
Index Terms: articulatory features, discriminative training, fi-
nite state transducers, dynamic Bayesian networks

1. Introduction
Standard pronunciation models are derived from existing dic-
tionaries with limited means of addressing the various ways in
which a word can be pronounced in casual speech [1]. It has
been suggested that such phone-based pronunciation models
do not properly handle variability due to the coarseness of the
phone unit [2, 3]. Modeling speech as multiple streams of lin-
guistically motivated sub-phonetic features has been explored
as an alternative, using either hidden Markov models (HMMs)
of combined articulatory states [4, 5] or factored-state models
represented as dynamic Bayesian networks (DBNs) [6, 7].

The DBN model of pronunciation in [6, 7] is motivated by
the theory of articulatory phonology [8]. The locations and con-
striction degrees of the articulators are represented in the DBN
as discrete-valued “articulatory features.” In this model, devi-
ations from a canonical pronunciation are the result of either
asynchrony between the articulators or substitution of some in-
tended articulatory position with another. The formulation as
a DBN (as opposed to an HMM) allows for factorization of a
state into multiple variables representing the articulatory fea-
tures, allowing for a more efficient parameterization (i.e., fewer
parameters).

In this work, we develop an approach that keeps the fac-
torization aspect of DBNs, but encodes it in a finite-state trans-

ducer representation. The other motivation for our work is a
desire to learn the pronunciation model discriminatively, with
more flexibility than allowed by generative models like DBNs.
The DBN of [6, 7] is trained to maximize the likelihood of the
training data. Discriminative approaches typically outperform
maximum likelihood parameter estimation in similar settings;
the main question is: can we keep the structure of a factored
DBN, but allow for discriminative training? We appeal to ap-
proaches that implement discriminative training by reweight-
ing scores on the arcs of weighted finite state transducers (WF-
STs) [9, 10, 11].

Our approach consists of two components:
• A method for deriving a parsimonious factorized WFST

representation (see Fig 1) from a DBN by taking advantage of
the conditional independence assumptions encoded in the DBN.
This process is detailed in Section 2.1, using the example of a
DBN representing an articulatory feature-based pronunciation
model (see Fig 2). Using a WFST framework allows us to later
take advantage of speech recognition frameworks that repre-
sent recognition components (acoustic/pronunciation/language
models) as WFSTs.
• An approach to discriminatively learning the weights of

the factorized FSTs, described in Section 2.2. This is similar
in spirit to previous work on decoding graph optimization tech-
niques that discriminatively learn weights corresponding to the
scores in a WFST [12, 9, 10]; for example, Watanabe et al. [10]
introduce a linear model on the arcs of a decoding graph for
a large vocabulary speech recognition task and observe perfor-
mance improvements comparable to those obtained from dis-
criminative acoustic modeling techniques.

We demonstrate this two-part approach with an isolated-
word lexical access task defined in [6]. Our experiments and a
discussion of the results are presented in Section 3.

2. Factorized FSTs:
Construction and Training

2.1. Efficient conversion of a DBN to factorized FSTs

To illustrate the conversion method, we use a DBN model
adapted from [6].1 Fig 2 is a simplified version of our DBN,
corresponding to a single time frame with three articulatory
features. This DBN was implemented using the GMTK
toolkit [13]. Word refers to the word in the current frame.
(T-Feat1,T-Feat2,T-Feat3) refer to the “target” feature values

1The DBN here differs from that of [6] in how it enforces constraints
on asynchrony between the articulatory features. In our DBN, the con-
straints are encoded in the conditional distributions of the Feati-Lag
variables. This helps to generate smaller WFSTs.
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Figure 1: A factorized WFST representation of the DBN in Fig 2 which, when composed from left to right, yields a WFST modeling
P((S-Feat1, S-Feat2, S-Feat3) |Word) of the DBN. Each box denotes a WFST, with input and output variables as shown. The variables
shown within the box correspond to those maintained as part of the internal state. The FST shown as a dotted box is deterministic.
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Figure 2: A simplified version of the DBN used in this work
(adapted from [6]). We show with dotted lines the partitioning
of the random variables into the factors as shown in Fig 1. The
numbered edges without parents on a variable indicate a depen-
dency on its value from the previous frame.

for the phones (Feat1-Phone,Feat2-Phone,Feat3-Phone)
as determined by a phone-to-feature mapping table.
(S-Feat1, S-Feat2, S-Feat3) refers to the “surface” fea-
ture values (actual values produced by the speaker), which are
observed for our task (indicated by the shaded variables in
Fig 2). In our experiments, we use seven features derived from
the vocal tract variables defined in [6, 8] including constriction
degrees and locations of the tongue tip, tongue body, lip, glottis
and velum. Phone-Posn is an index into the underlying pho-
netic pronunciation of the word (Phone) for the current frame
ranging from 0 to N − 1 where N is the number of phones
in the word’s pronunciation. However, the actual phones
corresponding to each articulatory feature could lag behind
Phone (and take the value of Prev-Phone) thus allowing for
asynchrony between the features. These lags for each feature
are modeled by (Feat1-Lag,Feat2-Lag,Feat3-Lag) (each lag
can be either 0 or 1) and the corresponding “feature” phones are
(Feat1-Phone,Feat2-Phone,Feat3-Phone), respectively. The
Transition variable helps update the feature lags, Phone-Posn
and Prev-Phone correctly. Henceforth, S will be used to
collectively represent all of the surface feature values and W
refers to the word. The DBN encodes the joint probability
distribution of all random variables; we are mainly interested
in the conditional probability P (S|W ).

We describe how to find a sequence of WFSTs (using the
freely available OpenFst2) which when composed (see Fig 2)
yields the same model P (S|W ) as defined by the DBN. We

2http://www.openfst.org/

use this factorized representation rather than a single one be-
cause the latter gives rise to an extremely large WFST (call it
AF) which is not only computationally infeasible to work with,
but also difficult to discriminatively reweight given the limited
amount of training data. The algorithm used to derive AF as a
composition of smaller “factor WFSTs” from the DBN does not
require the DBN to be explicitly multiplied out and then refac-
tored into factor WFSTs. Rather, the set of random variables
in the DBN is partitioned into subsets, (S1, . . . , Si, . . . , S`),
with corresponding factor WFSTs (F1, . . . , Fi, . . . , F`). Each
Fi produces variables in Si that are needed by Fi+1 as input.
All variables needed by Fi to produce its output should be either
a part of its input or a part of the internal state representation.

Fig 2 shows the partitioning of its random variables (ex-
cluding Word) into five subsets:

S1 = {Phone-Posn,Phone,Transition}
S2 = {Feat1-Lag,Feat2-Lag,Feat3-Lag}
S3 = {Prev-Phone,Feat1-Phone,Feat2-Phone,Feat3-Phone}
S4 = {T-Feat1,T-Feat2,T-Feat3}
S5 = {S-Feat1, S-Feat2, S-Feat3}

Fig 1 represents the factorized FSTs that we derive using the
above partitioning. Fi might have an internal state representa-
tion to store the variable values from the previous frame (shown
within the box in Fig 1). For example, F3 uses FeatiLag from
the current frame, Prev-Phone and Phone from the previous
frame to determine the value of FeatiPhone.

The factor WFSTs are designed as follows:
• S1, . . . , S5 are chosen so that F1, . . . , F5 are reasonably

sized. We require that S5 has the output random variables (sur-
face feature values in our task) and for each variable in Si, all
its parents should appear in Si−1 ∪ Si. The sets are judiciously
chosen to exploit the fact that, after our discriminative training,
the variables within the same set can influence each other be-
yond what the DBN allowed.
• The inputs and outputs of each Fi are readily determined

from the DBN structure, along with what needs to be main-
tained internally within the states. The arc weights in Fi are
determined by the conditional probability tables of the DBN.
• In computing each factor WFST, a dynamic program-

ming (DP) algorithm was used to efficiently determine the
weights on the arcs, as products of the appropriate probabilities
appearing in the DBN. Each arc weight is a product of several
conditional probabilities from the DBN with significant overlap
between arcs. Our DP algorithm builds the factor FST incre-
mentally by introducing one random variable at a time such that
each conditional probability table from the DBN is read only
while introducing that random variable.

These factor FSTs are then discriminatively reweighted by
representing their arc weights as a linear model. This is de-
scribed in more detail in the next section.



2.2. Discriminatively training the factorized FSTs

The previous section describes how we produce a set of FSTs
F1, . . . , F` that represent the probability distribution P (S|W )
(derived from the DBN).The decoding process for the lexical
access task is to compute the most likely word (W ) for the given
surface feature tuple sequence (S); i.e

W = argmax
W

P (W |S) (1)

= argmax
W

P (S|W ) (assuming uniform prior over words)

(2)

= argmax
W

X
S1,...,S`−1

P (S1|W )

`−1Y
i=1

P (Si+1|Si)P (S|S1)

(3)

≈ argmax
W

max
S1,...,S`−1

P (S1|W )

`−1Y
i=1

P (Si+1|Si)P (S|S1)

(4)

= in
ˆ

argmin
~a=a1,...,a`

w(S, ~a)
˜

(5)

s.t. out
ˆ
W ◦ a1 ◦ . . .ai . . . ◦ a`˜ = S

where ~a = a1, . . . ,a` is a sequence of paths in the factors
F1, . . . , F` and out

ˆ
W ◦a1 ◦ . . .ai . . .◦a`

˜
= S iff the input of

the arc sequence a1 isW , the output of a` is S, and the input of
ai = output of ai+1. Also, by in[~a] we mean the input sequence
of a1 to get a W sequence. We will soon elaborate on w(S, ~a)
in Eqn 5. Next, we rewrite P (S|W ) in terms of P (Si|Si−1)
corresponding to each factor FST. As shown in Eqn 3, we need
to sum over all of the different alignments, i.e. settings of the
hidden variables such as the feature targets, underlying phones,
etc. in the subsets (S1, . . . , S`−1). 3 We make the typical as-
sumption that one alignment is much more likely than all others
to derive Eqn 4.

We solve for W in Eqn 4 by finding a path tuple (~a) that
minimizes the total cost over all paths and satisfies the con-
straint shown in Eqn 5. w(S, ~a) is the total score from Fi for
a given S and a tuple of proposed arc sequences, ai from each
Fi. For the score function, we use a linear model as follows: the
score of ~a can be written as the inner product of a feature vec-
tor of size N (indexed by j = 1 . . .N ), where N is the total
number of arcs over all factors, and a corresponding parameter
vector α ∈ RN . The feature vector is scaled by a count func-
tion, C(~a, ri), that gives the number of times the arc indexed
by i (ri) appears in ~a. The feature vector and the score function
can be written as follows:

Φ(S, ~a) := [C(~a, r1)φ(S, r1), . . . ,C(~a, rN )φ(S, rN )] (6)
⇒ w(S, ~a) = 〈Φ(S, ~a),α〉 (7)

Given N training instances {Sn,Wn}, n = 1 . . . N , we
estimate the weight vector α using Collins’ averaged percep-
tron algorithm [14]. For the nth training instance, Eqn 5 yields
the best word hypothesis from the current model, Wn

dec, and
the best decoded arc sequence tuple, ~adec = (a1

dec, . . . ,a
`
dec).

We build a reference finite state acceptor, Wn, that takes as
input the correct word label (Wn) for the nth training in-
stance. The arc sequence tuple corresponding to the correct

3Eqn 3 can be formulated using P (Si+1|Si) terms because the fac-
tor FSTs obey the conditional independence assumptions imposed by
the DBN; thus, P (Si+1|Si, Si−1, . . . , S1) = P (Si+1|Si)

word (~acorr = (a1
corr, . . . ,a

`
corr)) is obtained similarly, ex-

cept we search for these tuples from the composition of the cor-
rect word acceptor and the factor FSTs (Wn◦F1◦F2◦. . .◦F`).

If Wn is misrecognized, i.e Wn 6= Wn
dec, α is updated as:

α(n+1) = α(n) + ρ(φ(Sn, ~adec)− φ(Sn, ~acorr)) (8)

where ρ is the learning rate. During evaluation, we use the av-
eraged perceptron algorithm that usesαai that is averaged over
all training examples and the total number of training epochs

It is instructive to compare our model of a collection of fac-
tor FSTs to a single FSTAF that modelsP (S|W ) directly. Our
model provides the ability to discriminatively train some factors
and not others; this is discussed further in Section 3. Also, us-
ing FST factors instead of a single FST could be viewed as a
kind of “parameter tying” by which we use a smaller number of
weights (on the arcs of the factor FSTs) to derive a large num-
ber of weights (on the arcs of the composed FST). One could
imagine that the features on each arc a in the composed FST
actually consist of a vector of features from the arcs a1, . . . , a`

that it decomposes into in the factor FSTs. However, we remark
that the effect of using the factorized FST model cannot be ac-
curately reproduced by such an approach since the set of arcs
a1, . . . , a` that a decomposes into is not fixed and depends on
the weights themselves.

3. Experiments and Results
3.1. Experimental setup

Our experiments were conducted on a subset of the Switch-
board conversational speech corpus that is phonetically labeled
at a fine-grained level [15]; these phonetic transcriptions are
mapped to articulatory feature value tuples that are used as in-
puts to our models. The words are excised from continuous
utterances and are treated as isolated for our task. The objective
of this task is to predict the word given its surface pronuncia-
tion. We measure performance by the number of words that are
incorrectly predicted (denoted by ER%). There are 3328 words
in the dictionary. The parameters of the DBN model were man-
ually initialized based on linguistic judgments (the error rates
were not different when we trained the DBN parameters using
the Expectation Maximization algorithm).

We use a single feature for arc ai in factor FST Fi:
− logP ({out

ˆ
ai˜, end[ai]} | {in

ˆ
ai˜, start[ai]})

where start[ai] and end[ai] refers to the start and end state for
arc ai, respectively and these probabilities are derived from the
original DBN model for each arc. By not introducing any addi-
tional information to the factorized FST model, other than the
DBN probabilities, we ensure that any improvements in perfor-
mance can be solely attributed to the discriminative nature of
the model. We use the same data splits as specified in [6, 7, 16]
in our experiments, i.e. a 2942-word training set, a 165-word
development set and a 236-word test set.

3.2. Results and discussion

We demonstrate the difficulty of this lexical access task by list-
ing two baseline results (from [17]) on the test set in Table 1.
The first baseline model only correctly predicts words in the
test set that match baseform pronunciations in the dictionary,
giving a large ER of 59.3%. This does not improve considerably
when the baseforms are expanded using a large set of phonolog-
ical rules (ER drops to 56.4%). The articulatory feature-based
DBN model shown in Fig 2 reduces the ER considerably. Our



Model ER (%)
Baseform only (from [17]) 59.3

Baseform + phonological rules (from [17]) 56.4
AF-based DBN (adapted from [6])a 43.0

Proposed disc-trained factorized FST model 35.9

Table 1: Error rates on the test set.
aThis number is different from [6] because our model uses a slightly

modified DBN structure that makes factorization more intuitive.

discriminatively trained factorized FST models were tuned on
the development set and the best results were obtained with
ρ = 0.001 and 5 training epochs. Our proposed approach re-
duces ER on the test set by an absolute 7% when compared to
the DBN model. This difference is statistically significant at
p < 0.001 according to McNemar’s test.

We can gain insight from examining arcs of a specific factor
FST that got reweighted significantly after discriminative train-
ing. For example, we analyzed FST F5 that maps target feature
value vectors to surface feature value vectors. One reweighted
arc maps an alveolar, uvular sound with a medium degree of
opening at both the tongue tip/body (e.g., [ah], [ax]) to a palato-
alveolar, uvular sound with a wide and medium-narrow opening
of the tongue tip/body, respectively (e.g., [uh]). This transduc-
tion becomes far less likely after training, with the weight on
this arc being five times larger than the original DBN score.
This indicates that a set of surface feature values when grouped
together ([uh]) are far less likely given a set of target feature
values ([ah]). Our factorized model allows for surface feature
values to be correlated given a target feature value configura-
tion, unlike in the DBN.

We chose the lexical access task to demonstrate the feasibil-
ity of deriving a discriminatively trained factorized FST, starting
with a fairly complex generative (DBN) model. We did not fo-
cus on obtaining the best possible model for this task (our ER%
on the test set is higher than the reported best results for this
task [16]). We intend to incorporate these discriminative finite-
state models within a full speech recognition FST cascade with
both word-level and acoustically motivated sub-word level fea-
tures on its arcs.

4. Conclusions
This paper proposes an efficient way of building a factorized
finite state model from a DBN that can be discriminatively
trained using a linear classifier. We demonstrate our approach
using a lexical access task and show significant improvements
over the original DBN model. There are a number of ways in
which this work could be further extended. Firstly, our model
representation allows for it to be easily incorporated within a
complete speech recognition system for comparisons with a
phone-based recognizer. This representation allows us to in-
clude features at both the word and the segment level on the
arcs of the factor FSTs. Secondly, the DBN model we use in
our experiments allows only context-independent substitutions
in each frame, i.e. the surface feature value only depends on the
current target feature value. We have observed performance im-
provements when we use context-dependent substitutions [7],
and it will be interesting to observe the benefits of discrimina-
tively training such a model. And lastly, there have been previ-
ous attempts at discriminative parameter learning for Bayesian
networks [18]. We reserve a comparison of our approach of
discriminatively reweighting the arcs of a factorized finite-state
model derived from a Bayesian network against these discrimi-

native parameter learning techniques for future work.
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