
Nearest Neighbors with Learned Distances
for Phonetic Frame Classification

John Labiak

Department of Statistics, University of Chicago
Chicago, IL 60637 USA

labiak@galton.uchicago.edu

Karen Livescu

Toyota Technological Institute at Chicago
Chicago, IL 60637 USA
klivescu@ttic.edu

Abstract
Nearest neighbor-based techniques provide an approach
to acoustic modeling that avoids the often lengthy and
heuristic process of training traditional Gaussian mixture-
based models. Here we study the problem of choosing the
distance metric for a k-nearest neighbor (k-NN) phonetic
frame classifier. We compare the standard Euclidean dis-
tance to two learned Mahalanobis distances, based on
large-margin nearest neighbors (LMNN) and locality pre-
serving projections (LPP). We use locality sensitive hash-
ing for approximate nearest neighbor search to reduce the
test time of k-NN classification. We compare the error
rates of these approaches, as well as of baseline Gaussian
mixture-based and multilayer perceptron classifiers, on
the task of phonetic frame classification of speech from
the TIMIT database. The k-NN classifiers outperform
Gaussian mixture models, but not multilayer perceptrons.
We find that the best k-NN classification performance is
obtained using LPP, while LMNN is close behind.

Index Terms: Phonetic classification, nearest neighbors,
distance learning, multilayer perceptrons

1. Introduction
State-of-the-art speech recognition systems often use Gaus-
sian mixture models (GMMs) for acoustic modeling. How-
ever, the use of GMMs for acoustic modeling in speech
recognition has drawbacks. GMMs usually require a very
large number of components, whose parameters can take
days or weeks to train. This training typically involves
a fair amount of trial and error to initialize and grow
the mixtures and to tune their hyperparameters (number
of components, regularization parameters). In addition,
GMMs are generative models, whereas discriminative ap-
proaches are often more successful in classification. Multi-
layer perceptron (MLP) phone classifiers are sometimes
used as well; these are inherently discriminative, but inte-
grating them into a speech recognizer is most often done
by training a GMM density model of their outputs, re-
introducing some of the drawbacks of GMMs.

One alternative that has recently been investigated [1,
2, 3] is nearest neighbor (NN) approaches. These ap-

proaches search through the training set for the examples
most similar to a given test example, and use the result to
either assign a class label to the test example or estimate
a density at test time. NN-based approaches require min-
imal or no training, and use information from individual
examples in the training set when making assignments,
thereby avoiding the drawbacks of GMMs.

In this paper, we study the performance of a nearest
neighbor-based approach, k-nearest neighbors (k-NN), on
the task of phonetic frame classification of speech from
the TIMIT database [4], and compare them to GMMs
and MLPs. A crucial aspect of nearest neighbor-based
approaches is the similarity or distance measure used to
define the nearest neighbors. We investigate several dis-
tance metrics for k-NN classification, all of which can be
defined as Mahalanobis distances: Given two d-dimen-
sional feature vectors x1 and x2, their Mahalanobis dis-
tance is ‖x1−x2‖M =

√
(x1 − x2)TM(x1 − x2), where

M is a d × d symmetric positive-semidefinite matrix.
A common choice is to set M to the identity matrix, in
which case the metric is the standard Euclidean distance.
We consider learning M from training data, using the
large-margin nearest neighbors (LMNN) [5] and locality-
preserving projections (LPP) [6] algorithms, both of which
learn projections that are optimized, in some sense, with
respect to the k-NN decision rule [7]. We also consider
the performance of k-NN classifiers after reducing the di-
mensionality of the features either using linear discrim-
inant analysis (LDA) or as part of the LMNN and LPP
algorithms.

While the Euclidean distance metric often achieves
good results, it is not likely to be optimal to use the same
measure of similarity between examples for different clas-
sification tasks, such as phonetic classification and speaker
identification, even when computing distances between
the same fixed-length feature vectors in each task. We
hope to improve performance by using a distance metric
that is adapted to the specific classification task of inter-
est. If new test examples come from the same distribution
as the training examples, then we expect that the learned
distance will be well adapted to the task of inferring the
class labels of these test examples.



By using k-NN, we are shifting the burden from train-
ing time to test time. In order to reduce the test-time bur-
den, we employ locality-sensitive hashing (LSH) [8], a
fast approximate search technique which can be used to
efficiently search through the training set at test time.

2. Methods
2.1. k-NN classification
The classification problem is defined as follows: Given a
training set, containingN labeled examples {(xi, yi)}Ni=1,
where xi ∈ X and yi ∈ Y , where Y denotes a finite set
containing C discrete class labels, assign a new test ex-
ample x0 ∈ X to one of the C classes of Y . Usually, X
is taken to be Rd, with Y ≡ {1, ..., C}.

The k-nearest neighbors decision rule is based on the
assumption that examples that are “similar,” according to
some reasonable similarity measure, are likely to belong
to the same class. It is often assumed that a distance met-
ric, D : (X × X ) 7→ R, between examples serves as a
reasonable proxy for their similarity. Thus, given a train-
ing set of labeled examples, the k-NN decision rule as-
signs a class label to a new test example by first finding
the k closest examples in the training set, according to D,
to the test example. The test example is then predicted to
belong to the class with the largest representation among
those k nearest neighbors.

One type of distance metric is a Mahalanobis dis-
tance, which is a norm induced by a symmetric positive-
semidefinite matrix M ∈ Rd×d, i.e. the distance is:
D(x1, x2) = ‖x1−x2‖M =

√
(x1 − x2)TM(x1 − x2),

where M = MT and M � 0. We consider the k-NN de-
cision rule for (1) M ≡ Id, where Id is the d× d identity
matrix, corresponding to the Euclidean distance, and (2)
M ≡ LTL, where L is a linear transformation learned by
a distance learning algorithm. Next we describe two such
distance learning algorithms.

2.2. Learned distances
2.2.1. Large Margin Nearest Neighbors (LMNN)
The large margin nearest neighbors (LMNN) algorithm [5]
is a supervised approach for learning the matrix of a Ma-
halanobis distance metric, M ∈ Rd×d, or, equivalently, a
linear transformation, L : Rd 7→ Rp (p ≤ d), that is opti-
mized with respect to k-NN classification. LMNN seeks
a transformation such that, in the embedding space, the k
nearest neighbors to an example are from the same class
and examples from different classes are separated by a
large margin. This gives rise to the cost function:∑

ij

ηij‖L(xi − xj)‖2

+c
∑
ijl

ηij(1− yil)[1 + ‖L(xi − xj)‖2 − ‖L(xi − xl)‖2]+

where [z]+ = max(z, 0),

yij =

{
1 if yi = yj ;
0 o.w.

and ηij = 1 if and only if xj is an n “target” neighbor
of xi; that is, if xj and xi are from the same class (yij =
1) and xj is among the n closest examples to xi in the
training set, as measured by the Euclidean distance. The
parameter n is known as the “neighborhood parameter”
of the LMNN algorithm (not to be confused with k in the
k-NN decision rule).

The first term in the cost function penalizes large dis-
tances between an example and its n target neighbors.
The second term penalizes small distances between an
example and examples from different classes. In par-
ticular, the second term incorporates the idea of a mar-
gin, through its use of the hinge loss [z]+ = max(z, 0),
such that a penalty is incurred for examples from different
classes whose distance to an example does not exceed, by
one absolute unit of distance, the distance between the ex-
ample and any one of its target neighbors. The cost func-
tion above can be reformulated as a semidefinite program
(SDP). In this work we use a Matlab implementation pro-
vided by Kilian Weinberger [5].

2.2.2. Locality Preserving Projections (LPP)
The locality preserving projections (LPP) algorithm [6]
learns a linear transformation L : Rd 7→ Rp (p ≤ d)
that aims to preserve the neighborhood structure of the
data. The neighborhood structure is encoded as a graph,
in which two nodes, xi and xj , are connected by an edge
if they are n-nearest neighbors (n is again the “neighbor-
hood parameter” of the algorithm), with edge weight wij

encoding their similarity. Typically, wij = e−
‖xi−xj‖

2

t

for some t. The basic algorithm considered here is unsu-
pervised, i.e. the training labels are unknown; although a
supervised extension exists.

The LPP objective function is a weighted sum of pair-
wise distances between points in the embedding space,
with weightswij . This objective function incurs a penalty
when neighboring points are mapped to vectors that are
far apart. The algorithm seeks a linear transformation ma-
trix, L ∈ Rp×d, such that this objective function is min-
imized. Intuitively, the optimal L will map neighboring
points from Rd to points that are close in Rp. It can be
shown (see [6] for more details) that the solution to this
objective function is given by the minimum eigenvalue
solutions to the generalized eigenvalue problem:

XGXT ν = λXDXT ν (1)

whereX = [x1, ..., xN ], G = D−W is the graph Lapla-
cian, W = [wij ] is the weight matrix, and D = [dij ]
is a diagonal matrix with dii =

∑
j

wij . Letting νi for

i = 0, ..., p − 1 be the vectors corresponding to the p
smallest non-zero eigenvalues, L = [ν0; ...; νp−1] defines
the linear transformation matrix that minimizes the LPP
objective function. Therefore, L defines a linear transfor-
mation such that k-NN classification is optimized with re-
spect to the Euclidean distance metric in the embedding



space, Rp, and M = LTL parametrizes a Mahalanobis
distance metric that is optimized for k-NN classification
in the untransformed feature space (Rd).

For this work, the LPP algorithm was implemented in
Matlab using code provided by Deng Cai.1

2.3. Locality Sensitive Hashing (LSH)
The main drawback of nearest-neighbor methods is the
need to search over the training set for each test point,
which can be very slow. There are a number of algorithms
for approximating the search that can greatly speed up the
search, such as kd-trees [9] and locality-sensitive hashing
(LSH) [8]. In this work we use LSH, which is particularly
well-suited to search in high-dimensional spaces.

An LSH family is a family of hash functions H :
Rd 7→ U , where U denotes some universe, such that for
any two points, p,q ∈ Rd, and a randomly chosen hash
function h ∈ H, the following two conditions are satis-
fied: 1. if ‖p − q‖ ≤ R then PrH[h(q) = h(p)] ≥ P1

and 2. if ‖p − q‖ ≥ cR then PrH[h(q) = h(p)] ≤
P2. An LSH family is useful if P1 > P2 and is called
(R, cR, P1, P2)-sensitive.

Given an LSH family H, and parameters L and k,
the LSH construction algorithm is defined as follows: 1.
Choose L functions gj , j = 1, ..., L by setting gj =
(h1j , h2j , ..., hkj), where h1j , h2j , ..., hkj are chosen uni-
formly at random from H. 2. Construct L hash tables,
where, for each j = 1, ..., L, the jth hash table contains
the dataset points hashed using the function gj .

For a query point q, the search then proceeds as fol-
lows: 1. For each j = 1, 2, ..., L (i) Retrieve the points
from the bucket gj(q) in the jth hash table. (ii) For each
of the retrieved points p, compute the distance from q to
it, and report the point if it is an R-near neighbor (i.e.,
‖p − q‖ ≤ R). The parameters L and k are the number
of hash tables and the length of the hash keys, respec-
tively. While LSH guarantees are with respect to the R-
near neighbor search problem, we use the same indexing
scheme to find approximate nearest neighbors by select-
ing from the union of retrieved points across the L tables
the set of k points closest to the query.

3. Experiments
Our experiments are based on phonetic classification of
speech frames from the TIMIT database of continuous
speech [4]. We consider two types of acoustic feature
vectors. In the first set of experiments, we used standard
39-dimensional feature vectors consisting of 13 Mel-fre-
quency cepstral coefficients (MFCCs) plus 13 deltas (first
derivatives) and 13 delta-deltas (second derivatives). In
the second set of experiments, we included 2 context frames
on each side, yielding 195-dimensional feature vectors.
Each frame was labeled as one of the 39 standard TIMIT
phonetic classes. We trained all classifiers on the stan-

1http://www.cs.uiuc.edu/homes/dengcai2/Data/code/LPP.m

dard TIMIT training set and tested on the standard “core”
test set. We held out a 50,000-frame subset of the train-
ing set as development data for tuning hyperparameters
of the classifiers and distance learning algorithms.

For the single-frame 39-dimensional features, we eval-
uated the performance of k-NN classifiers using Euclidean
and LMNN-based distance metrics. For the Euclidean
distance metric, we compared the performance of classi-
fiers using both exact search and LSH 2. For the LMNN-
based distance metric, we used LSH to perform the k-NN
search, and did not reduce the dimensionality.

Using the five-frame features, we evaluated the per-
formance of k-NN classifiers using Euclidean, LMNN-
based, and LPP-based distance metrics. In all cases, we
allowed for dimensionality reduction before performing
k-NN classification of the features. For the Euclidean dis-
tance metric, we used LDA to reduce the dimensionality
of the features to d = 38 (one fewer than the number of
classes, the maximum possible with LDA). For LMNN,
we tuned the dimensionality of the embedding space on
the development set and found that full dimensionality
yielded the best results. For LPP, we tuned the dimen-
sionality of the embedding space on the development set
and found that d = 130 yielded the best results. For all
experiments on the five-frame features, we performed the
k-NN search using LSH. For all experiments, we found
the optimal value of k in the range of 20 to 70 by tuning
on the development set. For LMNN and LPP, we used
default values for the neighborhood parameter (n = 3
and n = 5, respectively). Motivated by previous exper-
iments which showed that the distance metrics could be
effectively learned on subsets of the training data with
substantial reductions in training times, we used 20,000
and 100,000 examples, respectively, to learn the LMNN
and LPP metrics. In these experiments, the LMNN and
LPP metrics required about 0.5-1.5 hours to train.

We compared k-NN classifiers to Gaussian mixture
models (GMMs) and multilayer perceptrons (MLPs) 3.
The GMM-based classifiers were implemented using stan-
dard Matlab routines. The dimensionality of the features
was tuned on the development set and d = 38 was found
to yield the best results. We assumed diagonal covari-
ances for all Gaussians, and the number of Gaussian com-
ponents was tuned on the development set for factors of
two between 32 and 1024. Within this range, the best
number of components (as measured by development set
performance) was found to be C = 512. The MLPs were
trained on the training set, with a softmax output layer
and a sigmoid hidden layer with h = 2000 hidden nodes,
to optimize a cross-entropy based criterion. The MLPs
were implemented using the QuickNet toolkit [10].

Table 1 shows our results. k-nearest neighbor classi-
2We are grateful to Greg Shakhnarovich for providing his LSH code

and assistance in tuning LSH.
3The MLPs were provided to us by Rohit Prabhavalkar. We grate-

fully acknowledge his assistance.



fiers in general outperformed GMMs, while MLPs achieved
the best performance by a wide margin. Of the k-NN
distance learning methods, LPP performed the best, al-
though by only a small margin over the others. It is note-
worthy, however, that LPP is unsupervised, while both
LDA and LMNN are supervised.

We also compared retrieval times using exact search
and LSH with the 195-dimensional 5-frame feature vec-
tors. Depending on the LSH parameters (number of ta-
bles, length of hash keys), it improved search speed by
factors of up to about 50. For the results in Table 1,
we opted for slower LSH structures (closer to exact) to
ensure that the performance of different techniques is as
comparable as possible. The fastest LSH structure tested,
with a speedup of about 50x relative to exact search, re-
sulted in a 2% absolute increase in error rate.

Method Search ER (%) Params
k-NN Euclidean Exact 39.93 (k=39,d=39)
k-NN Euclidean LSH 40.08 (k=36,d=39)

k-NN LMNN LSH 39.90 (k=51,d=39)
k-NN Euclidean Exact 38.01 (k=30,d=195)
k-NN Euclidean LSH 38.03 (k=30,d=195)
k-NN Eucl.-LDA LSH 37.53 (k=33,d=38)

k-NN LMNN LSH 36.92 (k=30,d=195,n=3)
k-NN LPP LSH 36.72 (k=38,d=130,n=5)

GMM n/a 41.95 (C=512,r=0.0005)
MLP n/a 30.16 (h=2000)

Table 1: Error rates (ER) in %. d = 39 indicates 1-frame
features; the remainder use 5-frame features. The best results

obtained with each type of classifier are in boldface.

4. Discussion
We (and others) have motivated k-NN classifiers as an
alternative to GMMs for speech recognition because of
their simplicity, lack of training, and discriminative na-
ture. In this study, we have (a) reaffirmed the conclusions
of prior work (e.g., [1]) with evidence that k-NN classi-
fiers are at least a reasonable choice for speech recogni-
tion, as their performance is better than that of GMMs,
if not as good as that of MLPs, and (b) found that two
distance learning techniques, LMNN and LPP, improve
over the Euclidean distance with or without dimension-
ality reduction using LDA. The metrics can be learned
on subsets of the training data, leading to quick training.
LSH can be used to substantially reduce the burden of the
k-NN classifiers at test time.

One reason for the superiority of MLPs in our experi-
ments may be their nonlinearity. One direction for future
work, therefore, is nonlinear extensions of distance learn-
ing such as kernelized versions of the algorithms used
here. Other future directions include multiple-metric ex-
tensions to LMNN [5] and LPP [11], and supervised learn-
ing of embeddings rather than distances [12]).

Finally, frame classification performance is not nec-

essarily predictive of recognition performance, so future
work must also include validation in complete speech recog-
nition systems. One approach for incorporating k-NN
classifiers into continuous speech recognition is to con-
struct class-conditional distributions using kernel density
estimation, as in [1]: Given a feature vector x, the con-
ditional distribution for class c can be computed by first
finding the k-nearest neighbors to x from class c in the
training data, then defining the class-conditional distribu-
tion for c as a linear combination of k Gaussian densities
with equal variances, each centered at one of the k neigh-
bors. One of our main directions for future work is to
combine this idea with learned distance metrics.

5. References
[1] T. Deselaers, G. Heigold, and H. Ney, “Speech recognition

with state-based nearest neighbour classifiers,” in ICSLP,
2007.

[2] N. Singh-Miller and M. Collins, “Learning label embed-
dings for nearest-neighbor multi-class classification with
an application to speech recognition,” in NIPS, 2009.

[3] L. Golipour and D. O’Shaughnessy, “Phoneme classifica-
tion and lattice rescoring based on a k-NN approach,” in
Interspeech, 2010.

[4] L. Lamel, R. Kassel, and S. Seneff, “Speech database de-
velopment: Design and analysis of the acoustic-phonetic
corpus,” in Speech Input/Output Assessment and Speech
Databases, 1989.

[5] K. Q. Weinberger and L. K. Saul, “Distance metric learn-
ing for large margin nearest neighbor classification,” The
Journal of Machine Learning Research, vol. 10, pp. 207–
244, 2009.

[6] X. He and P. Niyogi, “Locality preserving projections,” in
NIPS, 2003.

[7] T. Cover and P. Hart, “Nearest neighbor pattern classifica-
tion,” Information Theory, IEEE Transactions on, vol. 13,
no. 1, pp. 21–27, 2002.

[8] A. Andoni and P. Indyk, “Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions,” Communications of the ACM, vol. 51, no. 1, pp.
117–122, 2008.

[9] S. Arya, D. N. Mount, N. S. Netanyahu, R. Silverman, and
A. Y. Wu, “An optimal algorithm for approximate near-
est neighbor searching,” in Symposium on Discrete Algo-
rithms, 1994.

[10] D. Johnson et al., “ICSI Quicknet software package,”
http://www.icsi.berkely.edu/Speech/qn.html, 2007.

[11] Y. Tang and R. Rose, “A study of locality preserving pro-
jections for feature extraction in speech recognition,” in
ICASSP, 2008.

[12] G. Shakhnarovich, “Learning task-specific similarity,”
Ph.D. dissertation, Massachusetts Institute of Technology,
2005.


