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Abstract
Recognizing aspects of articulation from audio recordings of
speech is an important problem, either as an end in itself or as
part of an articulatory approach to automatic speech recogni-
tion. In this paper we study the frame-level classification of
a set of articulatory features (AFs) inspired by the vocal tract
variables of articulatory phonology. We compare k nearest
neighbor (k-NN) classifiers and multilayer perceptrons (MLPs),
using different acoustic feature vectors, and classify the AFs
either independently or jointly. We also consider using the
MLP outputs for all of the AFs as inputs to k-NN classifiers
for the individual AFs, effectively using the MLPs as a form
of nonlinear dimensionality reduction and allowing the decision
for each AF to be based on the MLPs for the other AFs. We find
that MLPs outperform k-NN classifiers, while k-NN classifiers
using MLP outputs outperform both.
Index Terms: articulatory modeling, speech inversion, multi-
layer perceptron, k nearest neighbors

1. Introduction
In this paper we address the problem of classifying articulatory
features (AFs) from audio. This task has been addressed for
many reasons, including on its own as a scientific question and
as an intermediate step in articulatory approaches to automatic
speech recognition. In this work we consider a particular set of
multi-valued AFs based on the vocal tract variables of articula-
tory phonology [1], representing the locations and constriction
degrees of the lips, tongue tip, and tongue body and the states
of the velum and glottis. These features, shown in Table 1,
have been proposed as alternative sub-word units (as opposed
to phones) for automatic speech recognition [2, 3, 4, 5].

Compared to other AF sets, such as those based on phone
categories in the International Phonetic Alphabet (IPA), the fea-
ture set we consider has certain appealing qualities, such as
greater independence of the features and a more direct corre-
spondence with measurable vocal tract properties. In addition,
in lexical access experiments, where a word is identified from its
AF values, this feature set was more successful than one based
on IPA categories [4].

The classification of articulatory phonology-based features
from acoustics has not been extensively studied. In this paper,
we study the problem of classifying the feature values in a
frame of speech, both jointly and independently, using k nearest
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neighbor (k-NN) classifiers and multilayer perceptrons (MLPs).
MLPs are commonly used for phonetic classification, and have
also been used for classification of IPA-style AFs [6, 7], but to
our knowledge not for articulatory phonology-based features.
The outputs of MLPs are often used in speech recognizers indi-
rectly, by learning Gaussian mixture models over their outputs
in so-called tandem systems [8].

While nearest neighbor-based methods are not often used
in speech recognition, there has been some recent effort in
this direction (e.g., [9]). nearest neighbor classifiers involve
no training; the training data is simply stored, and test points
are classified by finding the nearest neighbors to it among the
training points. For example, Deselaers et al. [9] use the k
nearest neighbors of a given test frame to build kernel density
estimates of state likelihoods in a hidden Markov model-based
speech recognizer. k-NN classifiers have some advantages that
make them particularly attractive for speech recognition: they
are inherently discriminative, they avoid the long training times
associated with typical Gaussian mixture models on large data
sets, and they are nonparametric so they involve relatively little
tuning (typically, only the number of neighbors k). The non-
parametric nature of k-NN classifiers is particularly attractive
for new types of models, such as articulatory models, where
there is less understanding of the distribution of the data or of
the best strategy for training a parametric classifier.

Nearest neighbor techniques have one major disadvantage:
at test time, they require a search through all of the training
data. However, a number of approximate search techniques can
greatly improve search speed (e.g., [10]).

We also consider ways of taking into account the relation-
ships between the multiple AF classification tasks. While the
AFs are “physiologically” largely independent (there are few
constraints on the state of one articulator given those of other
articulators), it may be helpful to consider the tasks together. To
this end, we classify the features both jointly and independently.
We also consider a “tandem-like” approach in which the outputs
of the MLPs are used as inputs to k-NN classifiers. This has
the advantage of implicitly taking into account the correlations
between the multiple AF classification tasks: By using the MLP
outputs for all of the AFs, each AF classifier benefits from
information about the MLPs’ outputs for the other AFs.

2. Methods
2.1. k Nearest Neighbors

The k-NN algorithm consists of classifying each example x in
the test set by majority vote of the k nearest examples from the



Table 1: Our articulatory feature set.
feature values

LIP-LOC protruded (0), labial (1), dental (2)
LIP-OPEN closed (0), critical (1), narrow (2), wide (3)

TT-LOC inter-dental (0), alveolar (1),
palato-alveolar (2), retroflex (3)

TT-OPEN closed (0), critical (1), narrow (2),
mid-narrow (3), mid (4), wide (5)

TB-LOC palatal (0), velar (1), uvular (2),
pharyngeal (3)

TB-OPEN closed (0), critical (1), narrow (2),
mid-narrow (3), mid (4), wide (5)

VEL closed (0), open (1)
GLOT closed (0), critical (1), wide (2)

training set, where “nearest” is defined through a metric in the
input feature (observation) space. 1 Given a feature space X , a
label space Y , a training set T = {(xi ∈ X , yi ∈ Y)}Ni=1, a
metric D : (X × X ) 7→ R, a natural number k < N and a test
example x0 ∈ X ; let i1, ..., ik be the indices of the k nearest
neighbors of x0 in T with respect to D, and for each y ∈ Y , let
Xy be the subset of those nearest neighbors belonging to class
y, i.e., Xy = {ij : yij = y, 1 ≤ j ≤ k}. Then, the class of
x0 is predicted by majority vote: ŷ0 = arg maxy∈Y |Xy|. Ties
can be resolved by considering a lower value of k. The case
k = 1 corresponds to the basic nearest neighbor algorithm.

The basic assumption behind nearest neighbor classifica-
tion schemes is that examples that are close in the feature space
are likely to belong to the same class. How well this works
depends on the distance measureD. Typical choices are the Eu-
clidean and Mahalanobis distances. The Mahalanobis distance
is given byD(x1, x2) =

p
(x1 − x2)T M(x1 − x2), where M

is the Mahalanobis matrix. If M equals the identity matrix, this
reduces to the Euclidean distance. Another common choice for
M is the inverse covariance of the data, which is equivalent to
whitening the data and then using the Euclidean distance.

Linear feature transforms, such as principal components
analysis (PCA) and linear discriminant analysis (LDA), also
induce Mahalanobis distances. Consider linear transform L
from Rd to another (possibly lower-dimensional) space Rp. The
Euclidean distance between two vectors mapped to this space,
D(Lx1, Lx2), is equivalent to a Mahalanobis distance with
M = LT L in the original space:

(L(x1 − x2))
T IL(x1 − x2) = (x1 − x2)

T LT L(x1 − x2).

Estimating such a transform is therefore equivalent to learning
a Mahalanobis distance measure from the data.

There are many extensions to this approach, including vari-
ous distance learning techniques (e.g., [11, 12]) and extensions
of the k-NN rule that include distance-dependent weighting of
the neighbors. In this work, we concentrate on the classic k-
NN rule with Euclidean distances or the Mahalanobis distances
induced by PCA and LDA.

2.2. Multilayer Perceptrons

Multilayer perceptrons (MLPs) have been widely used in
speech recognition as part of models based on hidden Markov
models (HMMs). Typically, MLP phone (or phone state) clas-
sifiers are used in either a so-called “hybrid approach” [13],

1Note that we are using two senses of the word “feature”: The input
acoustic features are the observations measured from the speech signal;
and the classifier outputs are the discrete articulatory features.

in which HMM emission probabilities are replaced by scaled
likelihoods computed from MLP phone posteriors; or in a “tan-
dem approach” [8], in which the MLP log-posteriors serve as a
replacement for (or an addition to) the raw acoustic features in a
conventional GMM-HMM system. The tandem approach uses
MLPs as a form of discriminative, nonlinear dimensionality
reduction. MLP-based articulatory feature classifiers have also
been used in these frameworks, though with very different types
of articulatory features than the ones we consider here [6, 7].

Given a training set T = {(xi ∈ X , yi ∈ Y)}Ni=1, denote
by pi(y) the empirical distribution of the posteriors over the
classes y, given an input example xi. Thus, pi(y) = 1 if and
only if y = yi, and is 0 otherwise. In our experiments, we use
MLPs with one hidden layer, with a softmax non-linearity on
the output layer nodes. The outputs qi(y) can be interpreted as
an estimate of the posterior distribution over the classes y given
the input vector xi. Training consists of adjusting the weights
w by error backpropagation to minimize the following relative
entropy (K-L divergence) criterion:

L(w) =

NX
i=1

X
y∈Y

pi(y)
log pi(y)

log qi(y)

2.3. Using MLP Posteriors for k-NN Classification

Motivated by the success of tandem approaches in speech
recognition, we also consider an approach that combines MLP
outputs with k-NN classification. As an alternative to the k-NN
metrics based on linear transformations, such as PCA and LDA,
we consider the nonlinear mapping given by class posteriors
from MLPs trained to classify AFs. In contrast to other work
using phone-based MLPs, we are addressing multiple classifi-
cation tasks and will have multiple MLPs. For each articula-
tory feature, we have a choice of either using only the MLP
posteriors (MLPPs) for that feature or concatenating posteriors
from multiple MLPs. We hypothesize that using concatenated
MLPPs to classify each AF may be preferred, as it allows us
to implicitly take into account the dependencies between AFs.
Because of these dependencies, it may be helpful to know, when
classifying one AF, the “opinions” of MLPs for other AFs.

3. Experiments
Our experiments are done on a portion of the Switchboard Tran-
scription Project (STP) data [14]. The STP data is a subset
of the Switchboard conversational corpus that was manually
transcribed at a detailed phonetic level, including diacritics indi-
cating nasalization, frication (of an otherwise unfricated sound),
and so on. This allows us to consider the labeling as a proxy for
articulatory feature labels. We use only the portion of STP that
was labeled and aligned one segment at a time (the remainder
of STP was labeled at a syllabic level). We choose this cor-
pus because of its detailed labeling and conversational nature;
we expect the biggest advantages of using articulatory models
over phonetic models to be seen for conversational, spontaneous
speech rather than more formal/planned speech.

The ground-truth values for each of the AFs are set by a de-
terministic mapping from the annotated phones. This mapping
is laid out in detail in [4]. Stops, affricates, and diphthongs are
split into two segments each with separate AF configurations.
In such cases, 2/3 of the annotated segment’s duration is as-
signed to the first configuration and the latter 1/3 to the second.
Mapping from phones to AFs is not optimal, but we choose this
option due to the lack of corpora annotated at the articulatory
feature level. In this work we are considering classification on
the frame level, so we break up each segment into 10ms frames.



The eight AFs listed in table 1 can be classified separately;
or they can be classified jointly, treating each configuration of
all eight AFs as one label. The former approach is more ap-
propriate under the assumption that there are no dependencies
between the AFs, while the latter allows for arbitrary dependen-
cies (intermediate options exist as well; for now we consider
the two extremes). For the former approach, the number of
classes for each classification task is the cardinality of the AF in
question. In the latter case, although the joint state space of the
AFs has size 41 472, only 66 configurations occur in the data
and we limit ourselves to this number of classes.

The acoustic observations are standard 13-dimensional
mel-frequency cepstral coefficients (MFCCs) plus their first and
second derivatives, computed for each 10ms frame. We also
experiment with concatenations of multiple consecutive frames
around the current frame to form longer-context feature vectors.
Here we report on experiments using either single-frame win-
dows or 9-frame windows (resulting in 211-dimensional feature
vectors). For the 9-frame windows, we experiment with dimen-
sionality reduction using PCA and LDA. The frames are as-
signed ground-truth phonetic labels based on the time stamps in
the transcriptions. Silence frames are excluded, so that silence
does not dominate the classification task by virtue of being by
far the most frequent label. After excluding silence frames, our
corpus consists of 219 251 frames, or 36.5 minutes, of speech.

All of our experiments are done on the training subset of the
STP transcriptions. We use subsets 20, 23–49 for training and
tuning and subsets 21–22 as test data. For the MLP experiments
and for the k-NN experiments using MLP posteriors, we tune
on subset 20. For the other k-NN experiments, the hyperparam-
eters (k, the dimensionality for PCA and LDA) are tuned by
five-fold cross-validation over subsets 20 and 23–49. Training
(when applicable) with the optimal parameters is done over all
of sets 20, 23–49, before testing on subsets 21–22. We use
freely available Matlab toolboxes for the MFCC computation,
dimensionality reduction, and k-NN classification [15, 16, 11].
We trained the MLP classifiers using the QuickNet toolkit [17].

The MLPs have a single layer of hidden units with a sig-
moid activation function and a softmax activation function on
the output layer units as described in Section 2.3. The num-
ber of units in the hidden layer was tuned on the development
set. To avoid overfitting, we adopted an adaptive learning rate
schedule and early stopping based on classification performance
on the held-out development set.

For k-NN classification using MLP posteriors (MLPPs), we
consider several setups: using only the MLPPs corresponding to
a single AF for that AF’s classification; using the concatenation
of all of the MLPPs for each AF; and concatenating either of
these with the MFCC vectors (either single-frame and 9-frame
windows) to create a “tandem-like” feature vector. We also con-
sider using either raw posterior probabilities or log-posteriors
in these setups. Of these, we do not give results for MFCC
+ MLPP vectors or for log-posteriors, because in preliminary
experiments they consistently did worse than the other options.

In order to give an idea of how the methods perform on a
more familiar task, we also repeat some of our experiments on
the task of phonetic classification on the same data.

4. Results and Discussion
Our results for the classification of phones and AFs are sum-
marized in Figure 1 and Table 2. For phone classification, the
9-frame MLP outperforms the 9-frame k-NN classifier by about
19% relative. The MLPP k-NN, however, improves further on

Figure 2: Confusion matrices for k-NN AF classification using
MLPP inputs. Rows corresponds to true classes and columns to
predicted classes. Darker cells indicate higher values.

the MLP, attaining an error rate of 60.07%. This compares
favorably to a previously reported error rate of 62.7% for a 9-
frame MLP on a similar (but not identical) subset of STP [18].

For AF classification, we see the same pattern: The MLPs
do better than basic k-NN classifiers by a large margin, and
MLPP k-NN outperforms the MLPs for all eight classification
tasks, with relative improvements ranging from 2% to 6.4%.
While these improvements are small, they are encouraging be-
cause they suggest that, when we integrate the classifiers into a
speech recognition system, it may not be necessary to do further
training using the MLP outputs (as in tandem models).

Most trends in the results are consistent across the eight AF
classification tasks. Concatenating features across nine frames
substantially improves both k-NN classifiers and MLPs. Re-
ducing the dimensionality of the concatenated features for each
AF by PCA or LDA before k-NN classification gives little or no
improvement. We hypothesize that, in the case of LDA, too few
dimensions are retained (LDA is limited to one dimension fewer
than the number of classes). In the case of PCA (where our
tuned dimensionalities range from 25 to 125), we hypothesize
that Euclidean distance in the transformed space may be a less
appropriate measure than in the raw observation space.

In addition to the standard PCA and LDA, we also consider
learning an LDA matrix for the joint AF classification task and
using it for each of the individual classification tasks. This sub-
stantially improves over the other linear dimensionality reduc-
tion techniques and over using the full-dimensionality vectors.

Using the MLP posteriors as a nonlinear dimensionality
reduction proves to be the most successful. From our different
setups for k-NN classification with MLP posteriors, we get the
best results using raw rather than log probabilities, and using
the MLPP features alone rather than concatenated with MFCCs.
We do, however, see a significant improvement from combining
the posteriors from all eight MLPs for each k-NN classification.

The numbers of neighbors, k, that give the best results for
the MLPP k-NN classifiers (as measured by cross-validation
performance) are around 200 for all AFs except VEL, for which
it is 31. It should be noted, however, that the performance is not
very sensitive to the choice of k above about 50. Thus, when
computational complexity is an issue, lower values of k can be
used without substantial loss in performance.

Joint k-NN classification performs worse than individual
classification for all AFs. Using MLPPs improves the results,
but they are still worse than the individual classifiers with full
dimensionality.
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Figure 1: Error rates for AF classification. Methods sorted in order of mean performance. “Chance” refers to assigning each test vector
the most frequent class label in the training data.

Table 2: Error rates for the phone and articulatory feature classifications, in percent. “Raw” indicates no dimensionality reduction.

Chance

k Nearest Neighbors MLPJoint classification Individual classification
1-frame 9-frame 1-frame 9-frame 1-frame 9-frameraw raw MLPP raw raw PCA LDA joint LDA MLPP

LIP-LOC 14.9 16.6 16.1 14.2 14.7 13.8 13.8 14.5 13.4 12.8 13.8 13.3
LIP-OPEN 14.0 15.3 14.6 13.3 13.5 13.1 13.0 13.9 12.8 12.2 13.1 12.4

TT-LOC 25.5 27.5 25.2 20.6 24.8 23.6 23.5 23.7 22.0 19.1 22.4 20.4
TT-OPEN 71.9 55.1 51.9 38.3 54.4 51.5 51.8 48.6 42.0 36.8 42.2 38.9

TB-LOC 55.7 47.4 45.2 31.9 44.0 41.5 41.4 40.2 34.2 31.7 35.1 33.1
TB-OPEN 53.2 50.1 47.8 32.7 44.8 43.1 43.0 44.2 34.7 31.3 35.6 32.3

VEL 16.8 17.0 17.0 11.6 14.8 14.3 14.3 15.3 12.7 11.5 13.0 11.8
GLOT 19.0 15.1 13.3 8.7 14.9 13.7 13.5 12.2 9.2 8.4 10.0 8.7

Phones N/A N/A N/A N/A 77.5 74.6 74.4 75.2 N/A 60.1 63.7 60.3

Figure 2 shows confusion matrices for all of the AFs, us-
ing the MLPP k-NN classifiers. The classes with the highest
prior probabilities tend to dominate. While this is natural, it
may be problematic and should be particularly so for large k.
One possible way to mitigate this effect is to weight neighbors
differently depending on their distances from the test vector, a
possible improvement for future work.
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