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Abstract

Segmental models such as segmental conditional random fields
have had some recent success in lattice rescoring for speech
recognition. They provide a flexible framework for incorpo-
rating a wide range of features across different levels of units,
such as phones and words. However, such models have mainly
been trained by maximizing conditional likelihood, which may
not be the best proxy for the task loss of speech recognition.
In addition, there has been little work on designing cost func-
tions as surrogates for the word error rate. In this paper, we
investigate various losses and introduce a new cost function for
training segmental models. We compare lattice rescoring results
for multiple tasks and also study the impact of several choices
required when optimizing these losses.

Index Terms: speech recognition, segmental conditional ran-
dom fields, empirical Bayes risk, large-margin training

1. Introduction

Automatic speech recognition (ASR) typically works by finding
a word sequence that maximizes some goodness-of-fit function
f(z,w) between the observed acoustics Z and the word (or,
more generally, label) sequence w. This function is often an
estimated joint probability over (Z,w), and is factored into a
language model and an acoustic model. The acoustic model, in
turn, is also factored into chunks, each typically corresponding
to a single frame of acoustic observations.

This frame-by-frame modeling has some well-known limi-
tations, including the assumption of conditional independence
between frames and the inability to use expressive features
over larger segments of the speech signal (e.g., phonemes or
words). There have been a number of efforts to develop seg-
mental approaches that address these limitations [1, 2, 3]. A
recent successful approach uses segmental conditional random
fields (SCRFs) [4, 5], also referred to as semi-Markov CRFs [6].
SCRFs use a log-linear model for the conditional probability
p(W|T), with feature functions defined on entire segments of
observations. SCRFs provide a flexible way to incorporate seg-
mental features, and have been used to reformulate some earlier
approaches such as template-based ASR [7].

SCRF-based speech recognizers are trained by maximizing
the conditional likelihood (CL), i.e. the probability of word se-
quences given acoustics in a training set. But there are sev-
eral other loss functions that can be used, some of which better
approximate the task loss (word error rate) of speech recogni-
tion. Many have previously been used for frame-based speech
recognition [8]. For example, minimum Bayes risk [9, 10, 11],
large-margin criteria [12, 13, 14], and hybrid criteria [15] have
been successful for frame-based recognition. On the other end
of the spectrum, our own previous work has shown some bene-
fits of large-margin training over CL in isolated-word tasks with
word-level feature functions [16]. However, there is little prior

work on alternative training approaches for segmental models,
and the work that exists is limited to a specific type [17, 18].

This paper attempts to fill this gap by studying several train-
ing criteria for segmental models. We consider the same setting
as in recent work on SCRFs: We use a lattice rescoring frame-
work and define all training criteria with respect to lattices. We
perform these comparisons using a new toolkit that we devel-
oped.! This work is applicable to any discriminative log-linear
model with segmental features. In this paper, for expediency
we experiment with relatively “small” tasks: TIMIT phonetic
recognition and a sign language recognition task.

In the remaining sections, we formalize our problem set-
ting, define loss and cost functions, and present experimental
results. We introduce a new cost function for use with cost-
sensitive losses, experiment with losses not typically used in
ASR, and compare optimization with Rprop (commonly used
for SCRFs) vs. AdaGrad [19]. Ultimately, we find that log-loss
is remarkably robust for segmental models, though other losses
such as hinge and ramp loss often slightly outperform it; that op-
timization with AdaGrad provides a large speedup over Rprop;
and that our new cost function improves over the one typically
used in MPE/MWE [10].

2. Problem setting

Let V be a vocabulary of words (or more generally labels). We
define a segmentation as a sequence of contiguous nonover-
lapping closed intervals, or segments. The two end points of a
segment e = [s,t] are its start time s and end time ¢. Let Q
be the set of all possible segments, X’ the set of all observation
sequences (e.g., all MFCC sequences), and ) the set of out-
put structures. Here an output structure is a pair containing
a word sequence and a segmentation, i.e., Y = V* x Q*. For
an observation sequence T € X, a word sequence w € V*, and
its segmentation ¢ € Q*, we will write the word for segment
e = [s,t] € g as we, and the corresponding acoustic vector
subsequence (s, ..., Tt) as Te.

GivenZ € X andy = (w,q) € Y, a semi-Markov CRF,
or SCREF, defines the conditional distribution p(y|Z) using a
specific factorization:

p@z) = p(w,qT) = % exp (Z 0" ¢(z.,w., e)> ,

where & € R" is the vector of model parameters (weights),
¢ : X xV x Q— R"is a vector of feature functions, and
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is the partition function. SCRFs generalize standard linear-

chain CRFs [20] by permitting several observations to share

a single hidden state instead of just one. For simplicity, let

9. Y) = ¢@, (W, 7)) = > .cq9(Te,We, ). Inferring the

output structure is done by finding the mode of the distribution:

(0, §) = argmax p(w', 7 |T) = argmax 0 ¢(Z, 7). (1)
w’,q’ 7'

Assume the observation sequences and output structures
follow an unknown joint distribution p. The goal of the learn-
ing problem is to find a parameter vector that minimizes the
expected risk, i.e., solving
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where /£ is a task-specific loss function. However, we are only
given a set of samples S = {(Z1,7,),--.,(T~,Yy)} drawn
from p, and thus instead of solving Eq. (2), we turn to finding
the parameters that minimize the empirical risk plus regulariza-
tion terms:

N
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where A1 and A2 are the regularization parameters.
The de facto task loss for word recognition is always

0(6; T, (w,q)) = dist(w, w), O]

where w is the predicted word sequence given in Eq. (1) and
dist is the Levenshtein distance. Although the task loss does
not directly measure the quality of the segmentation, we do re-
quire the segmentation to be provided at training time. That is,
the segmentation is not a hidden variable to be inferred during
training. Using the task loss in Eq. (4), it is intractable to find
the optimal solution for Eq. (3). What we can do is to use a
surrogate loss / that approximates £ while being tractable to op-
timize. Several surrogate losses are defined in the next section.

3. Loss functions

We now describe several loss functions and provide their gra-
dients, all with respect to a single sample (Z,7). The standard
loss function for training SCRFs is the log loss,

len(0;7,Y) = —log p(y|7). (5)

Minimizing log loss is equivalent to maximizing conditional
likelihood (CL) on the training set. Its gradient is

VicL(0;T,7) = —¢(T,7) + Ey [o(z, 7)) (©)

Log loss does not explicitly contain the task loss (Levenshtein
distance), which is our primary interest in learning. One way
to target the task loss is to minimize the empirical Bayes risk
(EBR), as in minimum phone error (MPE) or minimum word
error (MWE) training [10]

lepr (05T, 7) = By [cost(y,7)] @)

where the cost function cost : ) X ) — R directly measures
the quality of the prediction. Its gradient is

ViR (0; T, ) = —Eg [cost(y', ) (T, 7))
+ Ey [cost(y', 9)|Ey [0(Z, 7)) (8)

The gradient is the covariance between the features and the cost.
The optimal model parameters are those that make the features
and the cost uncorrelated. Although we can always write out
the gradient of EBR analytically, it is only tractable if the cost
function factors in a way that permits efficient computation. For
segmental models, it is natural to require the cost to factor in the
same way as the feature functions, i.e., over segments.

The second loss that relates directly to the task loss is the
hinge loss [21, 17]

Ehinge (07 z, @) =
mae prcost(y'.3) 07 ¢(7.7) + 0 9(7.7)|  ©)

which is an upper bound on the cost of the model’s predic-
tions [22]. The hinge loss is not differentiable, but a subgradi-
ent can be computed efficiently, again assuming the cost factors
over the segments:

vzhinge(e; j7 y) = 7¢(E7 y) + d)(fa g)a (10)

where j = argmaxy, 0 ' ¢(Z,7’) + pcost(y',7), and the cost
weight p equals 1 for standard hinge loss. Computing ¢ is re-
ferred to as cost-augmented inference, which finds a hypothe-
sis that has both a high score under the model and a high cost.
Minimizing the hinge loss attempts to calibrate the model score
so that score differences are equivalent to differences in cost.
The loss in Eq. (9) is the same as that used in margin-rescaled
structured support vector machines [21, 23].
The third loss is the structured ramp loss [22, 24]

—/

Camp (67, 7) = — max [ cost(7',7) + 0" 6(7,7)]
Y
+ max [z cost(7”, 7) + 0" ¢(7,7")] (1)
Yy

where p1 and po are cost weights. When pqp = 0 and p2 =
1, this becomes the standard ramp loss [22], which is a tighter
upper bound on the cost function than hinge. As ui1 — —oo,
ramp becomes hinge loss. Therefore, if ;11 and p2 are tuned,
ramp loss should perform at least as well as hinge.

Log loss is commonly used in ASR in the context of stan-
dard maximum mutual information (MMI) [25] and SCRF
training, and EBR is used in MPE/MWE [10]. Hinge loss has
been used in ASR, but less commonly [18]. Ramp loss has not
been previously used in ASR. In terms of convexity, log loss
and hinge loss are convex while ramp and EBR are not.

All of the above gradients involve summing or searching
over the support of p(g|Z), i.e., the entire space ), which is
typically intractable. To handle this, we follow the common
approach of using a baseline recognizer to generate a lattice of
possible outputs. A lattice is a compact structure for storing
high-probability samples from p(y|Z), and we use lattices to
narrow our space for summing and searching.

Formally, let Pq C Y be the set of paths in a lattice output
by a baseline recognizer (the “denominator lattice”), and P, the
set of paths in the ground-truth lattice (the ‘“numerator lattice”).
For P, we can use a forced alignment with the ground truth,
which is often not in Py, in which case we also add the path
in P, to Pyq. An alternative is to use the oracle path (a path
with minimum error) in P4 as P,. Given the numerator and
denominator lattices, the gradient for CL becomes

Vi (6;7,(w,7) = —o@.7) + > p@' 7)),

g EPy



and other loss gradients are modified similarly. When comput-
ing the subgradient for hinge and ramp loss, cost-augmented
inference becomes a search over the lattice Py with the cost
function added to the scoring function.

We optimize the loss functions with either Rprop or
subgradient-based methods, e.g., SGD or AdaGrad. We also
include L, regularization with either dual averaging [26] for
AdaGrad, thresholding [27] for Rprop [28], or SMIDAS [29]
for vanilla subgradient descent.

4. Cost Functions

One popular cost function was proposed in [10] in the context of
MPE/MWE training, and we refer to it as MPE cost. The cost
of a path is the sum of costs of individual edges. The cost of an
edge is the non-overlaping part of a matching ground-truth edge
that gives the lowest error, where the error is one if the label is
correct and 0.5 otherwise. Formally, for any hypothesized
edge e, we define

costmee(e, J) (12)

lene’| 1 lene’|
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and costwpg (9, ¥) = >, costmpe(e, ), where |e| denotes the
length of segment e.

The MPE cost only penalizes false negatives and does not
account for false positives. Therefore, we propose an alternative
that we refer to as the overlap cost:

— eNe
cOstovertap (€, Y) = 1 — L, =w, Ie 0 5I7 (13)
where é = argmax,,; |€’ N e|. This cost function finds the
most overlapping edge in the ground truth and considers any
part of the union of the two edges that is not overlapping to be
in error. The cost for the whole path is again costoyertap (9, J) =

Zee'g COStoverlap(€7 y)

5. Experiments

We study the various losses and cost functions on two tasks.
One is a standard speech recognition task, namely TIMIT pho-
netic recognition. The second is a sign language recognition
task from video, in particular recognition of fingerspelled let-
ter sequences in American Sign Language (ASL). Both are
tasks on which there is prior work using SCRFs [30, 31], and
both are small enough (in terms of data set size and decod-
ing search space) to run many empirical comparisons in a rea-
sonable amount of time. For the ASL task, we use the data
and experimental setup of [31]: We obtain baseline lattices
using their tandem HMM-based system [31], and we use the
same set of segmental feature functions. Numerator lattices are
forced alignments of the ground truth transcriptions. We train
all models from all-zero weights and optimize with Rprop for
20 epochs. We use L; and L» regularization, with parameters
tuned over the grid {0,107°,107°,...,0.1, 1}2. For hinge and
ramp loss, we use the standard forms without tuning the cost
weights (i.e., u = 1, 1 = 0, and p2 = 1).

For TIMIT, we use the standard 3696-utterance training set
and 192-utterance core test set, plus a random 192 utterances
from the full test set (excluding the core test set) as a develop-
ment set. We use lattices generated by a baseline monophone
HMM system with 39-dimensional MFCCs. The resulting lat-
tices have an average density (average number of hypothesized
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Figure 1: Top: ASL results. Bottom: TIMIT results.
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edges per ground truth edge) of 60.1. The oracle phone error
rate is 6.3% for the development set and 7.0% for the core test
set. The numerator lattices are the oracle paths (paths with min-
imum phone error) from the denominator lattices; each numer-
ator lattice contains a single path. We implement segmental
models with various feature functions. The base features are
the acoustic and language model score, and a bias (a feature
that is always one). We also include a set of features based on
spectro-temporal receptive fields implemented as follows. We
begin with 40-dimensional log mel filter bank features. For each
segment, we divide it evenly into thirds in both time and fre-
quency, resulting in nine patches for each segment. For each
patch, we have a 3 x 13 receptive field of all ones, and convolve
it with the patch. The resulting 3 X 13 X 9 numbers are lexi-
calized to form the final features for the segmental model. We
optimize the loss functions using AdaGrad, using step size 0.1
for 10 epochs. L and L, regularization parameters are tuned
over the grid {0,0.001,0.1,1} x {0,0.1,1,100}.

The results for ASL recognition, averaged over four sign-
ers, are shown in the upper plot of Figure 1. The evaluation
metric is the letter error rate, which is the percentage of letters
that are substituted, inserted, or deleted. The results for TIMIT
are shown in the lower plot of Figure 1. We observe three con-
sistent conclusions:

e Across losses, overlap cost is better than MPE cost.

e Hinge loss with overlap cost is the best performer, but
this is only by a small margin, and log loss is very com-
petitive even without using an explicit cost function.

e Non-convex losses (ramp and EBR) are difficult to opti-
mize and therefore achieve inconsistent results. We sus-
pect a warm start might be able to remedy this.

For the ASL task, we tuned on a development
set the cost weights for ramp loss over the grid
{-100,-10,-1,-0.1,-0.01} x {0.01,0.1,1,10,100},
using overlap cost.  The test result of tuned ramp slightly
improves over hinge loss, confirming that if ramp is tuned
carefully, it is able to outperform hinge. However, even though
tuned ramp loss achieves very good results, considering the
time spent tuning p1 and w2, we still favor hinge and log loss.

The running times for calculating the gradients for differ-
ent losses differ by a constant factor, the number of forward-
backward passes required. Hinge loss requires one forward
search, log loss requires one forward sum and one backward
sum, ramp requires one forward and one backward search, and
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Figure 2: A comparison of convergence rate for Rprop and Ada-
Grad for ASL recognition on a single signer and a single fold.

EBR requires three forward sums and three backward sums. In
terms of convergence, although Rprop may ultimately achieve a
better objective, AdaGrad converges faster; see Figure 2. Rprop
normally requires 4-5 epochs to gain enough statistics for de-
terminining robust step sizes, while AdaGrad requires just one
epoch to hone in on the target region.

We also conducted experiments to determine how the re-
sults are affected by different levels of noise in the feature func-
tions, using simulated phone detector-based features. Similarly
to [32], we define a detection event as a (time, phone label) pair,
and a feature function that is an indicator of whether a phone
detection event occurs in the time span of the edge. If we set a
high weight for the phone event that occurs in an edge with the
same phone label, then we can exactly recover the oracle path.
This allows us to conduct a series of simulated experiments with
different amounts of noise added to the oracle phone events, or
gold events. For all experiments below, we use the same TIMIT
setting except that we only use the acoustic and language model
score with the simulated phone detector features, with no regu-
larizer and one epoch of AdaGrad. The ramp cost weights are
set to u1 = 0,u2 = 1. The cost weight for hinge is tuned
over {0.01,0.1,1,10, 100} and results are only shown for the
best-performing value.

The first set of experiments (Figure 3, top left) randomly
perturbs the correct phone label of each event to an incorrect
label with the corruption probability shown on the z-axis; the
event times are not perturbed. The second set of experiments
(Figure 3, top right) perturbs the time for each event but not
the label. We add Gaussian noise with mean set to the time
at which the event occurs and with several standard deviations
shown on the z-axis. For the third and fourth set of experiments
(Figure 3, bottom), we randomly include an edge in the lattice
as a false positive event, or randomly delete an event from the
gold events.

The conclusions are consistent with our previous observa-
tion, namely, that hinge is the consistent winner but only by a
very small margin, that log loss is very competitive, that non-
convex losses are hard to optimize, and that overlap cost is bet-
ter than MPE cost. As a byproduct, we note that we could
achieve the current state-of-the-art 17.7% [33] given a phone
detector with any of the following characteristics: up to 50%
phone error rate but perfect time information, up to 5-frame
time perturbations (in standard deviation) but perfect labels, 1.8
false positives per gold edge, or 20% false negatives.

6. Conclusion

Based on our own and others’ prior work , we have motivated
comparing different training approaches for discriminative seg-
mental models. We have compared log loss to cost-sensitive
losses (hinge, empirical Bayes risk, and ramp loss) on two quite
different tasks and under different conditions. We have pro-
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Figure 3: Top Left: perturbing phone labels. Top Right: per-

turbing time. Bottom Left: Adding false positive events. Bottom
Right: Adding false negative events.

posed the overlap cost function and have shown that it con-
sistently outperforms the MPE cost function which is com-
monly used in frame-based recognition. In general, hinge loss
with overlap cost achieves consistently strong results, but only
slightly better than log loss. Along the way, we have imple-
mented the various losses, costs, and optimization algorithms
in a new toolkit for discriminative segmental models (to be
released publicly upon publication), and have found that opti-
mization with AdaGrad is much faster than with the more com-
monly used Rprop for segmental models. For larger tasks (more
feature functions and/or larger vocabularies), we expect to also
see a speed benefit for hinge loss over log loss, as hinge loss
encourages sparsity in the weight vectors.

One of the interesting findings is that log loss is indeed dif-
ficult to beat, although for other types of models it has been
found to more clearly underperform cost-sensitive losses. It is
interesting to consider the possible reasons for this. The main
differences between the current work and prior work with cost-
sensitive losses include segmental (vs. frame-based) modeling
and lattice (vs. first-pass) decoding. It will therefore be interest-
ing in future work to tease apart these effects by comparing with
a frame-based version of our experiments and a lattice-rescoring
version of typical discriminative approaches. It is also interest-
ing to note that minimizing log loss is equivalent to minimizing
EBR with the cost 13.5. We are investigating how hinge and
ramp loss perform for this cost function to shed some additional
light on why log loss performs so well without the explicit cost
function. Finally, another advantage for log loss is its smooth-
ness; to test the effect of smoothness, it will be interesting to
compare boosted MMI [34] and hinge loss as in [35].
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