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Abstract

The phenomenon of anticipatory coarticulation provides a ba-
sis for the observed asynchrony between the acoustic and vi-
sual onsets of phones in certain linguistic contexts. This type of
asynchrony is typically not explicitly modeled in audio-visual
speech models. In this work, we study within-word audio-
visual asynchrony using manual labels of words in which theory
suggests that audio-visual asynchrony should occur, and show
that these hand labels confirm the theory. We then introduce a
new statistical model of audio-visual speech, the asynchrony-
dependent transition (ADT) model. This model allows asyn-
chrony between audio and video states within word boundaries,
where the audio and video state transitions depend not only on
the state of that modality, but also on the instantaneous asyn-
chrony. The ADT model outperforms a baseline synchronous
model in mimicking the hand labels in a forced alignment task,
and its behavior as parameters are changed conforms to our ex-
pectations about anticipatory coarticulation. The same model
could be used for speech recognition, although here we consider
it only for the task of forced alignment for linguistic analysis.
Index Terms: audio-visual speech recognition, audio-visual
asynchrony, anticipatory coarticulation, dynamic Bayesian net-
works

1. Introduction
Audio-visual anticipatory asynchrony is a naturally occurring
linguistic phenomenon in which the visible gestures (mainly the
lip gesture) for a speech segment occur in advance of other ar-
ticulatory components of the segment, so that the visible ges-
tures – theviseme – are seen before the corresponding phone is
heard. A common example of this is the “pre-rounding” seen in
the word “school”. The lips begin to round for the /uw/ sound
while the /k/ (or even /s/) is still being produced. This phe-
nomenon in known as “anticipatory coarticulation”.

Preservatory coarticulation is a similar effect, but instead
of one gesture beginning in advance, a gesture continues af-
ter. Though anticipatory coarticulation is more pervasivein En-
glish, the extent and directionality of coarticulation patterns dif-
fer across languages [1, 2].

Anticipatory coarticulation has been studied since at least
the 1930s [3]. In 1966, Henke proposed a computer model
of the articulation of English stop + vowel with a novel “look-
ahead” mechanism for anticipatory coarticulation [4].

In the speech recognition literature, Bregler and Konig
showed in [5] that, on average, acoustic features were maxi-
mally correlated with visual features 120 ms in the past. This
was also reported in psychological experiments by Benoit [6].

In the area of audio-visual speech biometrics, [7] cites these
asynchrony effects as one of the major open problems.

command color* preposition letter* digit* adverb

bin blue at A-Z 1-9, zero again
lay green by excluding W now

place red in please
set white with soon

Table 1: Vocabulary of GRID Corpus

Currently, a typical approach to modeling asynchrony in
audio-visual speech is the coupled HMM (CHMM) [8], in
which state transitions in each modality depend on the state
of the other modality. In this approach, asynchrony is typi-
cally allowed only within the boundaries of each phone/viseme,
whereas observed asynchrony often crosses multiple phone
boundaries. In contrast, the asynchronous dynamic Bayesian
network model of [9] allows asynchrony across multiple
phones/visemes within a word, but does not account for the
asymmetry that is typical to audio-visual asynchrony. Here
we develop a model of asynchrony that both spans multiple
phones/visemes and allows for explicit modeling of anticipa-
tory coarticulation.

To investigate anticipatory coarticulation, we collected
manual labels of phone and viseme onsets in words that are
likely to exhibit anticipatory coarticulation. To our knowledge,
this kind of study has not been done before. We also develop an
audio-visual speech model that can account for both anticipa-
tory and preservatory coarticulation. This model should beable
to handle asynchrony in a way that is more psycholinguistically
accurate than previous work.

2. Corpus and Utterance Selection
This work uses the freely available GRID Corpus [10], which
contains 34 subjects each speaking 1000 utterances in a studio
environment. Table 1 enumerates the corpus vocabulary, which
contains many opportunities for anticipatory coarticulation both
within and across words. Eleven types of within-word phenom-
ena were selected for analysis in seventy utterances over ten
speakers, yielding 166 instances of within-word coarticulation.
The selected instances, which all involve lip rounding or protru-
sion gestures, were:

• /uw/ in “blue”, “two”, “soon”, “q”, and “u”

• /r/ in “zero”, “three”, “four”, and “r”

• /w/ in “now”

• /ch/ in “h”

3. Human Labeling of Anticipatory
Coarticulation

Four undergraduate linguistics students who had completedin-
troductory linguistics classes were recruited to hand label the



Figure 1: AVDDisplay program created to facilitate easier hand
labeling of audio and video onsets.

audio and video onsets of the selected phones/visemes. Label-
ers were instructed only to “Please label the beginning of the
X gesture” (where X is one of the phones above) with no addi-
tional instruction, in order to prevent biased labeling. Nodef-
inition of “beginning” was provided. While this undoubtedly
added extra variability to the hand labels, it is a less biased re-
sult from which we can draw stronger generalizations. To aid
in the hand labeling task, we developed an audio-visual data
display tool (AVDDisplay). A screenshot is shown in Figure 1

3.1. Definition of Asynchrony

The video and audio are sampled at different rates and, thus,
a convention must be established to define “asynchrony”. The
video of the GRID Corpus is sampled at a rate of 25 fps, or one
frame every 40ms, while the audio is sampled at a much higher
rate. In this work, we consider an audio sample to “belong” to
a video sample if the audio sample time is within±20ms of the
video sample. In this scheme, each video sample represents the
audio samples that precede and succeed it by 20ms.

3.2. Results and Analysis

Upon initial analysis of the results, we noticed that the inter-
labeler range of markings for certain words in certain utterances

Labelers
Median 1 2 3 4

Avg. Audio Diff. 16.59 -11.16 8.96 -2.50
Avg. Abs. Aud. Diff. 24.63 16.40 17.02 12.70
Avg. Video Diff. 19.78 10.02 -7.81 -15.44
Avg. Abs. Vid. Diff. 31.63 31.55 25.33 22.77

# Early Vid. 35 30 67 13 14
# Early Aud. 13 10 24 36 28
# Synched 72 80 29 71 78

Table 2: Summary statistics for the four labelers L1–L4 and
their medianexcluding labels with low confidence. Posi-
tive/negative values signify that the mark is before/afterthe me-
dian.

could be fairly large, on the order of 150ms or more. We inter-
pret this as indicative of a particularly difficult word to label
and use confidence filtering to exclude such instances. To do
so, the ranges of the audio and video labels of all instances
of a word were each taken as a sample set and a99% confi-
dence interval around the mean was calculated. Any word in-
stance for which either modality’s range was above the upper
bound of that modality’s confidence interval was deemed to be
of “low confidence” and excluded from further analysis. Even
with this filtering, the audio and video ranges averaged approx-
imately 45ms and 75ms with standard deviations of approxi-
mately 40ms and 49ms, respectively.

Final markings were derived from the hand labeled data
by taking the median of each marking. These median labels
yield 35 instances of early video onsets (defined as the video
marking occuring more than 20ms before the audio marking),
13 instances of early audio onsets (the audio marking occurred
at least 20ms before the video marking), and 72 instances of
synchronous onsets (the audio marking was within 20ms of the
video marking). Table 2 reports these values as well as the asyn-
chrony breakdown for each labeler and some statistics pertain-
ing to each labeler’s performance relative to the median.

The average difference between each labeler’s markings
and the median reflects the data shown in the labeler’s asyn-
chrony breakdown. For instance, labeler 2 marked early video
onsets much more often than the median, and this is reflected
by the average audio difference being negative (later than the
median) and the average video difference being positive (ear-
lier than the median). Averages of absolute differences arealso
provided in Table 2.

The median markings of the labelers, shown in Table 2,
confirm the expectation that video onsets should precede audio
onsets more often than the reverse in the chosen words. While
the large number of synchronous onsets was not expected, this
could be due to the coarseness of the video sampling, which
means that only asynchrony greater than 20ms is recognized.

4. Machine Labeling of Anticipatory
Coarticulation

To capture the anticipatory coarticulation phenomenon, an
audio-visual speech modeling system must be able to allow
asynchrony across phone/viseme boundaries. One possible way
is to enforce synchrony at word boundaries while letting theau-
dio and visual stream models evolve without constraint within
each word. This does not make linguistic sense and, indeed, per-
forms poorly in experiments. To effectively model anticipatory
coarticulation, a model must enforce some kind of synchrony
constraints.

Our new model is based on the word-synchronous dynamic



asynchrony models AM AM AM

asynchrony enforcement AE AE AE

audio state index ASI ASI ASI

audio state transition AST AST AST

audio state A A A

video state index VSI VSI VSI

video state transition VST VST VST

video state V V V

audio observation AO AO AO

video observation VO VO VO

Figure 2: Word-synchronous ADT model for train-
ing/alignment. Diagram is simplified for clarity and is
conditioned on word-level variables that are not shown.

Bayesian network used in our previous work [11] with the ad-
dition of a synchrony control mechanism based on [9]. This
model also takes inspiration from CHMMs [8] in that it allows
state transitions to depend on variables other than just thecur-
rent modality’s state. In our case, however, the dependenceis
on the instantaneous asynchrony rather than the state itself.

4.1. Model Description

Starting with a word-synchronous dynamic Bayesian network
model based on our previous work [11], we add an extended
version of the asynchrony constraint system of [9]. In [9],
the amount of asynchrony is defined as the absolute value of
the difference between the state indices of the streams, mea-
sured relative to the last synchrony boundary (the beginning of
the word). Here we drop the absolute value, which increases
the number of parameters in the model but allows us to more
correctly model the difference between audio lead and audio
lag. This asynchrony model is learned during training. In a
CHMM, a modality’s state transition probabilities depend on its
state as well as the state of the other modality. In our model,
the state transition probabilites depend on the modality’sstate
and the amount of instantaneous asynchrony. We hypothesize
that when the modalities are asynchronous, they will tend back
to synchrony, so the state transition probabilities shouldbe dif-
ferent during asynchrony than during synchrony. We denote
the system with asynchrony-dependent transitions as the “ADT”
model. Aside from audio-visual stream weights, there are three
main parameters of this model: the maximum number of states
of audio lag, the maximum nubmer of states of video lag, and
the weighting of the asynchrony model.

Figure 2 shows our ADT models as a dynamic Bayesian
network. For clarity, state and phone/viseme level variables
have been collapsed into single nodes on the graph. Also, some
common elements, such as pronunciation variants and stream
weighting, are not shown. Blue nodes and edges represent the
audio modality, while red nodes and edges represent the video.
The grey nodes and edges denote the asynchrony model and its
links to the audio and visual modalities. Nodes with no border
are deterministic and hidden, while nodes with a circular bor-
der are deterministic and observed. Dashed rectangle borders
denote hidden, stochastic nodes and dashed circular borders de-
note observed, stochastic nodes. The observed audio and video
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A
Lag
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Lag 0 1 2 3

Audio Video Audio Video Audio Video Audio Video
0 43.50 49.00 43.50 44.56 43.50 44.56 43.50 41.22
1 43.50 53.44 43.50 46.78 43.50 44.56 43.50 41.22
2 43.50 52.33 43.50 49.00 43.50 45.67 43.50 43.44
3 42.39 55.67 43.50 49.00 43.50 45.67 43.50 42.33

Table 3: Average absolute audio and video differences between
median hand labels and ADT system labels, for instances where
hand labels indicate early audio onsets. Smaller numbers imply
better performance. Cell (0,0) is the baseline system.
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Lag 0 1 2 3

Audio Video Audio Video Audio Video Audio Video
0 33.97 50.13 32.69 55.27 33.11 61.56 33.77 65.56
1 33.11 43.56 33.97 49.27 33.20 60.41 33.43 54.41
2 33.40 42.99 33.34 48.70 32.86 53.27 32.86 54.41
3 33.11 42.99 33.63 48.70 34.26 54.41 34.00 54.70

Table 4: Average absolute audio and video differences between
median hand labels and ADT system labels, for instances where
hand labels indicate early video onsets. Smaller numbers imply
better performance. Cell (0,0) is the baseline system.

input nodes have Gaussian mixture distributions conditioned on
their respective state.

4.2. System Training and A/V Features

All systems were trained using the same technique. First, the
audio and visual streams were trained separately. The number
of Gaussians was tuned on a development set, using a mixture
growing and splitting procedure similar to that of [12]. The
single stream models are combined into a multi-stream model
and the combined model is refined by iterating twice through
the same mixture growing and splitting procedure.

Ten speakers from the corpus were used for these exper-
iments. The training set consisted of 70% of each speaker’s
utterances and the alignment set contained 10%. The remaining
20% have been reserved for future use. Training used audio and
visual stream weights of 0.7 and 0.3, respectively, which were
tuned using recognition experiments on the development set.

Audio features are 12 Mel frequency cepstral coefficients
plus energy, with delta and acceleration coefficients appended
for a total of 39 audio features. Video features are the 90
highest-energy DCT coefficients (corresponding to 95% of the
overall energy) of a 60x40 pixel region of interest around the
mouth. These coefficients are mapped to a 30-dimensional
space using PCA and have their delta and acceleration coeffi-
cients appended as well for a final total of 90 visual features.

All models were implemented using the GMTK [13, 14]
software package developed at the Univesity of Washington.

4.3. Forced Alignment Experiments

We use the ADT model to perform forced alignment, in which
the word sequence is known and the recognizer is responsi-
ble for determining the boundaries for all other hidden vari-
ables (words, phones, visemes, audio states, video states,etc.).
Forced alignment tasks are integral to speech recognition train-
ing and database development, and have important roles in sci-
entfic research on speech. Speech recognition systems can be
used as forced aligners to generate transcriptions of recordings.
This method is less laborious than hand labeling, and it is be-
coming widespread in experimental research, now that forced
alignment has become competitive with hand labeling for some
tasks [15].

We compare our forced alignment results to the human la-
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Lag 0 1 2 3

Audio Video Audio Video Audio Video Audio Video
0 25.65 25.26 25.55 26.74 25.29 28.06 25.06 30.92
1 25.89 28.58 25.24 29.79 25.72 30.65 25.54 29.81
2 25.48 28.58 25.61 30.98 25.61 29.42 25.59 26.42
3 25.92 30.15 25.32 27.89 25.74 29.39 25.59 28.54

Table 5: Average absolute audio and video differences between
median hand labels and ADT system labels, for instances where
hand labels indicate synchronous onsets. Smaller numbers im-
ply better performance. Cell (0,0) is the baseline system.

belers by looking at the onset boundaries. For each system,
the audio-visual stream weights were determined by optimizing
recognition performance over a 1000 utterance developmentset.
The 70 hand labeled utterances come from this development set,
so while the stream weights were not chosen completely inde-
pendently of the labeled utterances, the hand labeled utterances
make up a very small portion of the development set.

Tables 3 through 5 show the average absolute differences
for the audio and visual streams for the ADT system over vari-
ous maximum asynchrony constraints and broken down by the
median label classification of the utterance. The values in the
zero audio/video lag cell of these tables represent a fully syn-
chronous system, a fairly common implementation of an audio-
visual speech system and the baseline model against which we
can compare. Overall, the audio differences are barely affected
by changing the maximum allowed asynchrony, so our analysis
will focus on the absolute video differences.

Table 3 shows the model’s performance for cases where
the median human label indicated an early audio onset. For a
fixed audio lag, as allowed video lag increases, performanceim-
proves (absolute differences decrease). This is what we would
expect as increasing video lag gives the audio more opportuni-
ties to precede the video. Conversely, increasing the allowed
audio lag for a given video lag decreases performance, as one
would expect.

The results for the early video onset cases, shown in Ta-
ble 4, are also consistent with our linguistic expectations. For a
fixed video lag, as allowed audio lag increases, performance
tends to improve (absolute differences decrease) until some
threshold. Furthermore, the converse holds as well. Again,this
agrees with our linguistic intuition about anticipatory coarticu-
lation.

The synchronously labeled cases (Table 5) predictably
show the best performance when no asynchrony is allowed, and
no significant patterns exist in the rest of the results.

5. Summary and Future Work
In this work, we have studied the labeling of anticipatory coar-
ticulation in audio-visual speech. We have collected a set of
manual labels of audio and video phone/viseme onsets, and
found that, while the labelers have fairly high variance, their
median behavior agrees with our expectations about antici-
patory coarticulation. We have also developed a statistical
model of audio-visual speech that explicitly accounts for cross-
phone, asymmetric asynchrony between the audio and video
state streams. Forced alignments with this model show the ex-
pected effects of anticipatory coarticulation, given appropriate
limits on the allowed lag in each stream. Considering the labo-
rious nature of the manual labeling task, we are optimistic that
automatic forced alignment with this type of model can help
psycholinguists study audio-visual speech phenomena.

The forced alignment results presented here, while encour-

aging, depend on setting the appropriate maximum audio/video
lag for a given context. This suggests that an asynchrony model
that adapts to linguistic context may be needed to more accu-
rately model the effects of anticipatory coarticulation.

In our ongoing work, we are continuing to study forced and
manual alignments in the presence of different types of audio-
visual asynchrony effects, both for its own sake and for the pur-
pose of improving asynchrony models for audio-visual speech
recognition.
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