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ABSTRACT We are mainly concerned with articulatory measurements

. ) ) corresponding to the spatial location of pellets attachesgv-
Articulatory measurements have been used in a variety qf articulators, as in EMA and X-ray microbeam, and we

speech science and technology applications. These measufg. s our efforts on data from the Universty of Wisconsin X-
ments can be obtained with a number of technologies, such ffléy microbeam database (XRMB) [10]. Due to limitations
electromagnetic articulography and X-ray microbeam,-typi of e recording technology, articulatory measurements of
cally involving pellets attached to individual articulesoDue o\ ~ontain frames where one or more pellets’ coordinates ar

to limitations in the recording technologies, articulgtotea-  isqing |n the case of X-ray microbeam recordings, pellets
surements often contain missing data when individual felle ;.o otten mis-tracked for a part of an utterance for roughly

are mis-tracked, leading to relatively high rates of losthis  £4_500ms at a time [10] (see Fig. 1 (left) for sample mis-

expensive and tlme-con.summg data source. We present Hack patterns). Since it is prohibitively expensive toaret
approach to reconstructing such data, using low-rank matriperfectly clean articulatory measurements, such migemc
factorization techniques combined with temporal Smod$hne (o¢6rgs are left as is and only annotated as mis-tracked. The

regularization, and apply it to reconstructing the mis®ng  ,ns o missing data are sufficiently long that reconstarcti
tries in the Wisconsin X-ray microbeam database. Our aly;5 single-dimension interpolation is not feasible.

gorithm alternates between two simple steps, each having a Although the overall proportion of missing data in a data-

closed form as the solution of a linear system. The algopase may be low, the proportion of affected frames is much
rithm gives real|s_t|c reconstructions even whena maj_cmty higher. The subset of XRMB used in this paper includes 47
the frames con_tam missing data, improving over previous Pspeakers uttering 53 utterances. In this data set, 3.4%eof th
proaches to this problem in terms of both root mean square tries are missing, yet 23.6% of the frames contain at least

error and p_honetic recognition performance when using thSne missing entry, and the proportions of missing data vary
reconstructions. greatly between speakers. Overall, XRMB is reported to have

Index Terms— articulatory data, X-ray microbeam, about 35% affected utterances [10].

missing data, matrix factorization There have been several approaches applied to recon-
structing the missing entries of articulatory recordinéo-
1. INTRODUCTION weis [14] takes an approach based on probabilistic prithcipa

) component analysis which employs Expectation Maximiza-
Articulatory measurements are a valuable resource for ggp, (EM). Qin and Carreira-Perpian [15] model the fully

number of spoken language technology applications. FGjpserved frames with Gaussian mixtures and impute the
example, in speech synthesis they have been used to gengfissing values based on conditional statistics of the missi
ate speech from articulation [1, 2, 3]. They have been useg@imensions given the observed dimensions.

to train acoustic-to-articulatory inversion models withpé- The task can be viewed as the problem of completing a
cation, for example, in speech recognition [4, 5, 6, 7].  INmairix from a few given entries. This is a fundamental prob-
speech recognition they have also been used for multi-vieys, with many applications in machine learning, computer
acoustic feature learning [8, 9]. There are a number of Waygisjon, network engineering, and data mining. Much interes
of simultaneously recording acoustic and articulatoryadat j, marix completion has been caused by recent theoretical
including X-ray microbeam [10], electromagnetic arti@io  preakthroughs in compressed sensing [16, 17], as well as by
raphy (EMA) [11], ultrasound [12], and magnetic resonancepe celebrated Netflix challenge on practical predictiasber
imaging (MRI) [13]. lems such as user ratings prediction [18, 19]. Many matrix

This research was supported by NSF grant IIS-1321015. Thions completion approaches assume that the underlying data ma-

expressed in this work are those of the authors and do nossedy reflect  triX is low-rank [16, 20, 21], as a simple way of constraining
the views of the funding agency. the degrees of freedom in the model.




The typical pattern of missing articulatory data is quiteBut sinceX is not fully observed, we shall instead impose the
different from that in other domains such as user ratings ismoothness penalty on the low-rank approximation. Combin-
recommender systems, which have a very high missing datag the two intuitions gives the following objective funmti:
proportion. More importantly, articulatory measurements . e ) )
have a sequential structure: We know the time ordering of the 1in Mo X-UVH|L+AU[E+ V)
recordings, and that the trajectories of articulators kheary ' T T
smoothly over time due to physical constraints. Therefore, +ytr (UV LVU ) , (2
it is natural to combine matrix completion techniques WithWhere

) ) o |-l - is the Frobenius norm and, v > 0 are trade-
temporal smoothness constraints for reconstructing ngssi

icul d he followi off parameters for thd.2 and smoothness penalties respec-
articu at(;]ry data. In the (I)I owing, we present one ,Suclhtively. The L2 term functions like a Gaussian prior &hand
approach and reconstruct all missing measurements simu ti‘/, and also helps avoid numerical instability as described in

neously for each speaker (W,ithOUt adaptation), making tise %ection 2.2. Once the factof®/, V) are obtained by solving
both fully observed and partially observed frames. In the re 2), the missing entries & are filled with the corresponding
mainder of the paper, we introduce our approach and give tries ofUV T

optimization procedure, discuss closely related appresch
and demonstrate our approach in terms of reconstruction err
and speech recognition using reconstructed measurements

Without the smoothness penalty (i.e.,= 0), the above
objective reduces to one thatis widely used in the matrix-com
pletion and collaborative filtering literature and leadgtie
alternating least squares (ALS) minimization algorithr@][1

2. SMOOTHED LOW-RANK This approach has been very successful for recommender sys-
MATRIX COMPLETION tems, where it is widely believed that there are only a few
In the following, we denote bX = [xi,...,xy] € RPxN  latentfactors that contribute to the user ratings.

the articulatory measurements ovAar successive frames, 22 Optimizati

where each column of the matrix corresponds tofthe- 16 - P'm_'za lon o o )
dimensional articulatory measurements in a time frame. Irf he objective function is convex and quadraticinif V' is

our case there are 100 frames per second (downsampled frdied and vice versa. This naturally leads to alternating opt
the original XRMB frame rate). Le¥I € RP*N pe a binary ~Mization on the two sets of variables. Compared to [18], the
matrix with M;; = 1 if X,; is observed and otherwise, for added smoothness penalty term complicates the optimigatio
i=1,...,D,j=1,...,N. but we still have a closed-form solution for each step.

We denote by» the element-wise multiplication between U-step For fixedV, we compute the gradient of the objec-
two matrices, and by the Kronecker (“outer”) product. We tlve. (2) Wlth respect tdJ and set it to zero to obtain the fol-
useM’ (M) to indicate the-th row (j-th column) of the ma-  lowing linear system:
trix M, diag (v) the diagonal matrix with elements of vector T T
v on the diagonal, and vé¥') the vector obtained by con- (Mo UV =X)V+AU+1UV LV) =0.
catenating the columns of matri. We can further decompose the linear system intoak sys-

2.1. Objective function tem for each row of U:

In low-rank matrix completion, we approximate the under-U’v T diag (Mi)V—l-/\Ui—i—vUi(VTLV):Xdiag (Mi)V,
lying data matrixX as the multiplication of two matrices,
X ~ UVT, whereU € RPxF vV ¢ RN**k andk <  Sothateachrow o can be solved in closed form as

max{D, N} so that the approximation is low-rank. Equiva- __;, . i T 5 i T 1
lently, each frame is approximated as a linear combination oU = X diag (M ) V(v diag (M ) VALV LV)™
k basis vectors (columns &f). On the one hand, we would V-step For fixedU, we compute the gradient of the objec-

like the approximation to be as close to the observed entrigg o (2) with respect t&v and set it to zero to obtain the fol-
as possible, i.e[X;; — (UV");;| should be small ifX;; is lowing linear system:

not missing. On the other hand, we want the trajectory to
be smooth over time, i.e., the difference between sucaessiv (M’ © (VU —= X)) U+ AV +4LVU'U =0. (3)
frames|x; 1 — x;|| should be small. This suggests a smooth-

ness penalty™ ! [[x; 41 — x; % = tr (XLXT) with Without the smoothness penalty teriican be obtained sim-
j=1 I =2 ilarly to U by solving ak x k system for each row separately.
1 -1 0 --- 0 However, the smoothness regularization couples row¥ of
-1 2 -1 ... 0 together, i.e., for each royy the above system reduces to
_ 0 -1 2 - 0 . : .
e @ ViU diag (M;) U + AV +4LIV(UTU)
0 0 .. —1 1 = (X;)" diag (M;) U,



where the last term on the left contains all rowsvaf Notice

: ) . . Ek | Sioo
that (3) is essentially a Sylvester equation for which iieea S| e 0
solvers exist [22]. Alternatively, we could rewrite it as % = | § o
) 5 ——JW13
(K+M+1L® (UTU))-veqV") =veqU'™ (M & X)), E‘ — g 70 - was
= JE— ] 2 60 W36
where H o T
5 o)
U diag (M) U e ‘ _‘ & 5 10 15
K= . > k
U diag (My)U Fig. 1. XRMB data characteristics. Left: missing data

patterns for 6 utterances (white/black pixels denote ob-
Therefore,V can still be obtained in closed form by solving served/missing entries); rows correspond to the 16 articu-
the aboveV K x N K sparse linear system thanks to the sparfatory dimensions and columns correspond to time. Right:
sity in L. percentage of total variance contained in the firgtrincipal

The U/V-step of the algorithm clearly finds the unique components for several speakers’ articulatory measursmen
minimum given the other set of parameters and thus decreases

the overall objective. All matrices to be inverted are pusit

semidefinite and in fact positive definiteXf> 0. Thus using  better reconstruction, whereas Roweis’ approach doesinot i
a small positive\ improves numerical stability for each step. clude regularization.

As initialization, we fill the missing entries with zeros and  In Qin and Carreira-Perpifian’s approach [15], each frame

compute the truncated SVD to obtdihandV. of articulatory data (16 dimensions) is modeled with a Gauss
ian mixture model (GMM), and the missing entries are re-
3. RELATED WORK constructed as the mean of the conditional distribution of

missing entries given the observed entries (which is again
Roweis described his algorithm for reconstructing missinga Gaussian mixture). The GMM parameters are learned on
data as a modified EM algorithm for PCA [14, page 49]. Thefylly observed frames, so the potentially useful inforroatin
algorithm can be viewed as alternating optimization of thehe |large amount of partially observed frames is unused. The
following objective: approach cannot succeed when few fully observed frames

. X UV 4 are available, and this is the case for several speakers in
xrf{}flv H N HF (4) XRMB; for example, speaker JW29 has omy0 fully ob-
_ _ served frames out df1 608 frames in our data set, which is
The algorithm consists of: insufficient to learn an accurate Gaussian mixture model.
e generalized E-step: for fixed badis, compute the la- There are also several related matrix completion algo-

tent representatioV using partially observed dimen- Tithms from the machine learning literature. For example,
sions for each frame, and fill in the missing entries ofcandes and Tao [17] minimize the nuclear norm (sum of sin-
X with corresponding entries TV T . gular values) as a convex surrogate for rank. éal. [21]
directly solve for a matriXX that agrees on observed entries
e M-step: for fixedV, compute the basis of the prin- as much as possible, subject to the (nonconvex) constraint
cipal subspacdJ by solving a linear systenfJ =  rank(X) < k. Keshavaret al. [20] proposed initializing
XV(VTiv)-! the solution using SVD after trimming (zeroing out rows and
o ) columns with too few entries) the input matrix, followed by a
Our approgch is similar to this one when we do not use anyreedy minimization of the residual error.
regularization § = ~ = 0), but there are differences in the ~  The mostimportant distinction between our approach and
optimization parameters and error function: Our approache ahove related work is that we explicitly model the tem-
does not optimize oveX while Roweis’ does; and Roweis” 5| smoothness in our time series data whereas the above

algorithm requires filling in the missing entriesXat every  5nnroaches ignore sequential structure, and would produce
M-step, whereas in our approach we only fill them in once afyentical results even if the frames were shuffled.
the end. However, the two approaches ultimately aim to min-

imize the same approximation error only at observed entries

during training, and both fill in the missing entries with €or
responding entries d'V . In our experience, our optimiza- 4.1. Data
tion empirically converges much faster, presumably bezausThe XRMB database [10] consists of simultaneously recorded
we take into account missing entries in both steps. Finallygspeech and articulatory measurements from 47 American
we find the regularization in our approach to be important folEnglish speakers (22 males, 25 females). Each speaker’s

4. EXPERIMENTAL RESULTS



Table 1. Missing data proportions for several speakers. Table 2. Reconstruction errors (RMSE) obtained by different

Speakef # Frames Missing Missing algorithms for artificially blacked-out data.

1 Frames (%) Entries (%) ours ours Ours
JWil | 54880 14.4 19 Source Target Ref GMM (7,\::(%, =0 (=0 Ours
JWI5 | 56849 | 78.0 10.7 JW13| 17.77 508 1.70 1.65 152 151
JW29 | 51608 | 984 13.9 JW26 | 18.44 237 171 168 140 1.40
JW30 | 54809 20.6 3.4 Jwil

Jw3l| 1571 248 185 181 159 1.58
Jw45| 19.78 147 143 138 138 1.37
Jwi13 | 27.70 7.66 200 189 124 1.24
JW26 | 29.52 17.34 257 212 129 1.29
Jw31l| 25,71 7.12 260 190 140 1.39
Jw45 | 32.05 1341 3.10 183 1.37 1.36
Jwi13 | 2551 1725 197 181 184 1.63
JW26 | 23.13 13.21 210 199 133 1.32

recordings comprise approximately 20 minutes of read $peec
including multi-sentence recordings, individual senec  Jwi15s
isolated word sequences, and number sequences, as well as
non-speech oral motor tasks. We exclude utterances corre-
sponding to isolated words and oral motor tasks, leaving up

to 53 utterances per speaker. The utterance texts areddenti j\w29
for all of the speakers; this is important in our evaluatias, JW31) 21.82 14.81 142 142 138 119
described below. The articulatory measurements are herizo JW45 | 24.95 13.67 1.88 138 1.45 1.20
tal and vertical displacements of 8 pellets on the speaker’s JWI13) 2165 259 651 169 6.38 169
tongue, lips, and jaw. We downsample the articulatory datayw30 JW26 | 2242 483 6.64 213 651 210
from an original rate of 145.6542 Hz to 100Hz to match the JW31119.72 714 587 1.85 576 183
frame rate of our acoustic features (mel-frequency celpstra JW45] 2570 290 189 1.80 136 1.35
coefficients (MFCCs) computed every 10ms).

4.2. Validation of the low-rank assumption speakers with low missing data proportions were selectdd an

We first select 6 speakers with 1% missing entries and ©On€ pellet (2 out of 16 dimen.sions) at a time was b]ac_ked out
< 5% missing frames, and plot the eigen-spectrum computea”d reconstructed. In practice, the patterns of missing dat

by PCA on fully observed frames for each speaker in Fig&r€ Very different between the pellets and there is much more
ure 1 (right). Itis clear that the eigen-spectrum decaysiqui  Missing data for most speakers.

such that the first few principal components contain most of We reconstruct all utterances for each target speaker

the total variance. at once, so all utterances share the same bdsisvhile
the smoothness penalty is only imposed within each ut-
4.3. Reconstructing artificially blacked-out data terance. We do not run our algorithm on each utterance

We then design a mechanism for testing our algorithm angeparately as pellets are sometimes missing for entire- utte
selecting hyperparameters (rahkregularization parameters ances, so there is insufficient information to reconstriuesée

A and~). We follow the previous work of [14] and [15] dimensions using a low-rank matrix factorization model.
and create artificially blacked-out entries that are heldfou ~ We select 50% of the blacked-out entries as a tuning set
training, and evaluate the reconstructions by computirg thfor hyper-parameter selection and the other 50% for test-
errors at these ground-truth entries. We try to mimic the nating.  Hyper-parameter selection is done via grid search
ural missing data pattern in XRMB by copying the patterngfor rank & in {2, 4, 6, 8, 10, 12, 14, 16} and A, in
from one speaker to another. For example, suppose speakéh 1072, 1071, 1, 10, 10?} for our algorithm. For compar-
JW29's data contains missing entries; then we select a difson, we have also implemented the Gaussian mixture model
ferent speaker, JW13, whose articulatory measurements afeMM) of [15]. For the GMM algorithm we tune the number
mostly complete, and remove entries from JW13's data corr2f Gaussian componentd in {1, 2, 4, 8, 16, 32, 64} and
sponding to the ones missing from JW29, after linearly warptrain with EM.

ing the two speakers’ data to the same length. After recon- The test set RMSEs obtained for different (source, tar-
structing the artificially missing data of JW13, we evalithte ~ get) pairs are shown in Table 2. Results are also provided
results by computing the root mean squared error (RMSE, ifor special cases of our algorithm: no regularization at all
millimeters) of the reconstructions at those entries thasa- (A = 0, v = 0, roughly corresponding to Roweis’ approach),
tificially blacked-out for IW13. In the following, we trarsf  no L2 regularizationX = 0), and no smoothness regulariza-
the missing data patterns of source speakdWw11, JW15, tion (y = 0). As a reference, we show the RMSE obtained
JW29, JW30 to four target speaker®]W13, JW26, JW31, by filling all missing entries with zeros, denoted Ref (thes i
JW45}. Table 1 shows the proportions of missing data forin fact the initialization for our algorithm).

the four source speakers. This problem setting is more chal- From the results it is clear that regularization (L2 or
lenging than that of [15], where several utterances from twemoothness) improves performance, and the two regulariza-



TP024: “Things in a row provide a sense of order ...

Table 3. Phonetic error rates (PER) of recognition using the
baseline features and concatenations of the baselineadésatu
with reconstructed articulatory measurements.

— Ground Truth
—Ours\ = v = 0)

Method PER (%)
Baseline (MFCCsonly] 31.1
GMM 22.0
TP029: “When else fails, use force ... " Ours Q =7 = O) 20.4
;g’a‘:ré”(i”%“ﬁ -0 Ours 20.0
2 |

cillating trajectories with low-rank matrix factorizatipwhile

the regularized version improves over the unregularized ve

i s d s e 7 i 3 2 s & 7+ & sion. For the mid-tongue pellet, which is missing for only a

TPO79: “... he once knew - signs that would tell for sure if amaal was near or not.” short duration, the unregularized a|g0rithm works better,

—G d h . . . .

—8RETS — o) dicating that the smoothness regularization selectedagjijob

for all pellets is somewhat too strong for this particulal pe

let. However, T3 is somewhat of an outlier: looking at all

of the pellets individually, it is almost always the casettha
our algorithm with some non-zero regularization outperfer

Voo e zomoEmome the unregularized version, and for some pellets the smagthi

TP094: “Put these two down? ... . . .
—Groumg T 20 and/or L2 regularization makes a very large difference.
IS\ =~ =

—Ours(\ = 0)
—Ours

-36

-38f —Ours

4.4. Phonetic recognition with reconstructed data

Next, we consider what effect the differences in reconstruc
tion performance may have on downstream tasks of interest.

. N N " - " Many have found that appending articulatory measurements
seconds seconds to acoustic features improves speech recognition perfocema
Fig. 2. Sample reconstructions of the horizontal (left) and(€-9-; [4]), and we test our reconstructions on this task.
vertical (right) coordinates of the mandibular and midgoe First, we select the optimal hyperparameters for each
pellets. The GMM-based reconstructions are far beyond th@lgorithm based on the average performance on all of the
range of the pellet locations and are not shown. above (source, target) pairs and use them to reconstruct all

of the data in our XRMB data set. There is a wide range of

hyper-parameter combinations at which our algorithm per-
tions are complementary. When no regularization is used, thforms similarly well, but we useli(= 6, A = 1, v = 1) for
best reconstruction is obtained at a relatively low rah&n6,  our algorithm with full regularization anéd = 4 for the un-
as Roweis suggested). With regularization, even bettenrec regularized A = v = 0) special case. Since the performance
struction can be obtained by our algorithm at a higher rankof the GMM approach varies a great deal depending on the
We also note that GMMs work well when the missing propor-missing data proportion, we sg&f for each speaker to match
tion is very low (e.g., when JW11 is the source speaker), ithe source speaker frofdW11, JW15, JW29, JW30with
which case the optimal number of Gaussian componkhts the closest missing data proportion.
is larger. But when most frames are missing, discardingghos  We use disjoint sets of 14/9/9 speakers for recognizer
frames entirely loses too much information, and the GMMtraining/tuning/testing. The recognizer is a basic 3eskett-
approach tends to select very smialland perform poorly. to-right monophone HMM-based model, where each state

Figure 2 shows sample reconstructions of the mandibulatas a GMM observation model with 32 components. The

(MNm) and mid-tongue (T3) pellets for several utterancesbaseline acoustic features are 13 MFCCs appended with first
In this case the reconstructions were obtained with the optiand second derivatives. The articulatory measurements are
mal hyperparameters (based on overall RMSE) when we resoncatenated over a 7-frame window around each frame, and
construct JW45'’s data based on the missing data patterns thfeir dimensionality is then reduced with PCA. Table 3 re-
JW29. In this experiment, only 1.6% of the total frames in-ports the phone error rates (PER) obtained on the test speake
clude the mandibular pellet, and the utterances shown in thehen using only the baseline MFCCs and when appending
figure have this pellet missing entirely; the algorithms muswith reconstructed articulatory measurements produced by
infer the missing entries from the few observations of tiels p  different methods. As expected, appending the articufator
let and information from other pellets. In this very chaflen data always improves recognition performance over the-base
ing condition, we are able to reconstruct well the rapidly osline (up to 11% absolute and more than 33% relative). Our



smoothed low-rank reconstruction algorithm performs much([7] C. Canevari, L. Badino, L. Fadiga, and G. Metta, “Reles@n
better than the GMM approach and slightly better than the  weighted-reconstruction of articulatory features in deep
unregularized special case. The difference in performance heural-network-based acoustic-to-articulatory mappingn-
between our algorithm and its unregularized version is sig- ~ terspeech 2013.

nificant at a level ofp < 0.01 according to a Matched Pair [8] R. Arora and K. Livescu, “Multi-View CCA-based acous-

Sentence Segment (Word Error) test [23]. tic features for phonetic recognition across speakers and d
mains,” ICASSP 2013.
5. EUTURE DIRECTIONS [9] R. Arora and K. Livescu, “Multi-view learning with supé&r

sion for transformed bottleneck featureBCASSP 2014.

We have proposed a simple algorithm for reconstructingsmis . .
brop P 9 g 10] J. R. Westbury, X-Ray Microbeam Speech Production Data-

Inlg z_:lrtlcula(tjtory measluremenﬁs based onl '0?""“'?‘”" n:atr(lé(;;:o base User’s Handbook Version 1.0, Waisman Center on Mental
pletion an temppra smoothness regu arlzqtlon. t aemev Retardation & Human Development, University of Wisconsin,
good reconstruction error compared to previous approaches Madison, W1, June 1994.

and the reconstructed articulatory data improves the perfo[ll] A. A. Wrench, “A multi-channel/multi-speaker articbry

mance of a phonetic speech recognizer. . database for continuous speech recognition reseaRtufius
There are several natural directions for future work. First 2000.

the gIob_aIIy Ii_near assumpt_ion underlying Iow-rank matrix 12] C. Qin, M. A. Carreira-Perpifian, K. Richmond, A. Wrench,

completion might be unrealistic, and one can instead model ~ ang s. Renals, “Predicting tongue shapes from a few landmark

the data as approximately lying on the union of multiple sub- locations,” Interspeech 2008.

spaces [14], or on a low-dimensional nonlinear manifold [24[13] . Bresch, J. Nielsen, K. Nayak, and S. Narayanan, “Bysc

25]. Second, we have not used the simultaneously recorded njzed and noise-robust audio recordings during realtimg-ma

acoustic data that is available in the XRMB data, which con-  netic resonance imaging scansl’ Acoustic Soc. Amer., Vol.

tains complementary information that may be useful for re- 120, No. 4, pp. 1791-1794, 2006.

construction. Third, our smoothness penalty can be consigi4] S. T. RoweisData Driven Production Models for Speech Pro-

ered to be a simple dynamic model that encourages nearby cessing, Ph.D. Thesis, Cal. Inst. Of Tech., 1999.

frames to be similar, and itis possible to extenditto riaher  [15] C. Qin and MA. Carreira-Perpifian, “Estimating missing data

namic models and to pellet-specific smoothing. Finally, our  sequences in X-ray microbeam recordingsierspeech 2010.

approach does not handle the (infrequent) case of a pediet thj16] E. J. Candes and B. Recht, “Exact matrix completioncaia-

is missing from most or all of a speaker’s data; for this pur- vex optimization,” Foundations Of Computational Mathemat-

pose adaptation approaches can be considered for applying ics, Vol. 9, No. 6, pp. 717-772, Dec. 2009.

one speaker’s reconstruction model to another speaker [26][17] E J. Candés and T. Tao, “The power of convex relaxation:
Near-optimal matrix completion,”TEEE Trans. Info. Theory,
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