
Information and Coding Theory Autumn 2014

Homework 2

Due: November 25, 2014

Note: You may discuss these problems in groups. However, you must write up your own solutions
and mention the names of the people in your group. Also, please do mention any books, papers or
other sources you refer to. It is recommended that you typeset your solutions in LATEX.

1. Biased coins strike back. In class we cosidered the problem of distinguishing coins dis-
tributed according to the following two distributions:

P =


1 w.p. 1

2 − ε

0 w.p. 1
2 + ε

and Q =


1 w.p. 1

2

0 w.p. 1
2

We derived matching upper and lower bounds (up to constants) of the form Θ(1/ε2) on the
number of coin tosses required to distinguish the two distributions. Consider now the problem
of distinguishing two extremely biased coins with slightly differing biases:

P ′ =


1 w.p. ε

0 w.p. 1− ε
and Q′ =


1 w.p. 2ε

0 w.p. 1− 2ε

Find tight upper and lower bounds (up to constants) on the number of independent coin
tosses required to distinguish coins distributed according to P ′ and Q′.

2. Counting using method of types (Problem 11.5 from the book). Let U be a finite
universe with |U | = m and let g : U → R be a real valued functions. Let S ⊆ Un be the set
sequences x1, . . . , xn with each xi ∈ U defined as

S =

{
(x1, . . . , xn) ∈ Un | 1

n

n∑
i=1

g(xi) ≥ α

}
.

Let Π =
{
P |

∑
a∈U P (a)g(a) ≥ α

}
. Show that

|S| ≤ (n+ 1)m · 2nH∗
,

where H∗ = maxP∈ΠH(P ).

3. Loaded dice. Consider the following game played using a dice: a single dice is rolled and
we gain a dollar if the outcome is 2, 3, 4 or 5, and lose a dollar if it’s 1 or 6.

(a) What is our expected gain assuming all outcomes in {1, 2, 3, 4, 5, 6} are equally likely.

(b) Find the maximum entropy distribution over the universe U = {1, 2, 3, 4, 5, 6} such that
the expected gain is at least α (say α is greater than the expected gain for the uniform
distribution).
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4. Finding one in many hidden coins. We considered algorithms which tried to find a
biased coin among N coins, where in a position j (unknown to the algorithm) we have a
coin with probability of heads equal to 1/2 − ε, and in the remaining positions we have fair
coins which come up heads and tails with equal probability. The algorithm A outputs a pair
(at, bt) ∈ [N ]2 at each time t. Here, bt represents the algorithm’s guess at time t for the
position of the biased coin and at is the position for which it asks to see the output of the
toss at time t. We showed that for T ≤ 60N/ε2, there exists a set of at least N/3 positions
(depending on A) such that if the biased coin in hidden in one of these positions, then the
algorithm finds it with probability at most 1/2.

Here, we consider a generalization of the above setup where we have many biased coins and
the algorithm succeeds if it manages to find any one of the biased coins. Let Z1, . . . , ZN be
independent random variables with the following distribution:

Zi =


1 w.p. k

N

0 w.p. 1− k
N

.

Given a sequence of values z = (z1, . . . , zN ) for the above random variables, we take distri-
bution of the coin in the ith position to be

P =


1 w.p. 1

2 − ε

0 w.p. 1
2 + ε

if zi = 1

and

Q =


1 w.p. 1

2

0 w.p. 1
2

if zi = 0

Coins in all N positions are independent. Also, the values z1, . . . , zN are only chosen once
at the beginning and remain fixed through the run of the algorithm A. At each step t, A
outputs a pair (at, bt) ∈ [N ]2 and sees the output of the coin in position at as before. The
algorithm succeeds after T steps, if the guess bT+1 made after seeing T tosses indeed contains
the location of a biased coin i.e., bT+1 is such that zbT+1

= 1.

For a fixed z ∈ {0, 1}N , let Dz denote the distribution for the view of the algorithm when
the biased coins are located according to z. Let Bz denote the set {i ∈ [N ]|zi = 1}. Let D0

denote the distribution for z = (0, 0, . . . , 0).

(a) For an appropriate constant c, show that

P
Dz

[bT+1 ∈ Bz] ≤ P
D0

[bT+1 ∈ Bz] + c · ε ·
(
E
D0

[|{t ∈ [T ] | at ∈ Bz}|]
)1/2

.

(b) Use the above to show that

E
z

[
P
Dz

[A finds a biased coin]

]
= E

z

[
P
Dz

[bT+1 ∈ Bz]

]
≤ k

N
+ c · ε ·

(
kT

N

)1/2

.
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5. Chernoff bound for read-k families. We used Sanov’s theorem to derive the Chernoff
bound for independent random variables X1, . . . , Xn taking values uniformly in {0, 1}. In
particular, we showed that

P
[
X1 + · · ·+Xn ≥

(
1

2
+ ε

)
n

]
≤ (n+ 1)2 · 2−n·D( 1

2
+ε‖ 1

2) ,

whereD
(

1
2 + ε‖1

2

)
denotes the KL-divergence of two distributions on {0, 1}, with probabilities

(1
2 + ε, 1

2 − ε) and (1
2 ,

1
2). In this problem, we will consider functions f1, . . . , fr depending on

the variables X1, . . . , Xn and prove a concentration bound on the expression f1 + · · ·+ fr.

Let S1, . . . , Sr be subsets of [n] for each i ∈ [r], let fi : {0, 1}Si → {0, 1} be a function
which depends only on the variables in Si. We use the shorthand XSi to denote the variables
{Xj}j∈Si

. Moreover, we have the property that each variable is involved in only k functions
i.e., ∀j ∈ [n], |{i ∈ [r] | j ∈ Si}| = k. Such a family of functions is called a read-k family (it
is not too hard to see that the lower bound extends to the case when each vartiable is in at
most k functions).

(a) Recall that for two random variables Z1 and Z2 distributed on same universe U , we
also use D (Z1‖Z2) to mean D (P1‖P2). Let Y1, . . . , Yn be (not necessarily independent)
random variables jointly distributed on {0, 1}n and let X1, . . . , Xn be random variables
as above, distributed uniformly and independently on {0, 1}n. Let the sets {Si}i∈[r] be
as above. Use Shearer’s lemma to show that

k ·D (Y1, . . . , Yn‖X1, . . . , Xn) ≥
∑
i∈[r]

D (YSi‖XSi) .

(b) Let A =
{

(a1, . . . , an) ∈ {0, 1}n |
∑

i∈[r] fi

(
{aj}j∈Si

)
≥ t
}

. Let (Y1, . . . , Yn) be uni-

formly distributed over the set A (note that Y1, . . . , Yn are not necessarily independent).
Prove that

P
X1,...,Xn

∑
i∈[r]

fi(XSi) ≥ t

 = 2−D(Y1,...,Yn‖X1,...,Xn) ,

where the probability is over the uniform distribution for X1, . . . , Xn.

(c) For each i ∈ [r], let E [fi (XSi)] = µi and E [fi (YSi)] = νi. Prove that

D (YSi‖XSi) ≥ D (νi‖µi) ,

where D (νi‖µi) denotes the divergence of two distributions on {0, 1} with probabilities
(νi, 1− νi) and (µi, 1− µi).

(d) Use the above bounds and the convexity of KL-divergence in both its arguments to show
that for µ = 1

r · (µ1 + · · ·+ µr),

P
X1,...,Xn

[f1(XS1) + · · ·+ fr(XSr) ≥ (µ+ ε) · r] ≤ 2−(r/k)·D(µ+ε‖µ) .
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