Information and Coding Theory

Lecture 10: October 30, 2014

Lecturer: Madhur Tulsiani

Scribe: Min Jae Song

Autumn 2014

1 I-Projections and applications

We first review I-Projections from last lecture.

Definition 1.1 Let Π be a closed convex set of distributions over U. In addition, assume that $Supp(P) \subseteq Supp(Q)$ for all $P \in \Pi$, and Supp(Q) = U. Then

$$Proj_{\Pi}(Q) = \operatorname*{arg\,min}_{P \in \Pi} D(P||Q) = P^*$$

We proved in last lecture that P^* exists and is unique. It is immediate from definition that if $P \in \Pi$, then $D(P||Q) \ge D(P^*||Q)$. In fact, P^* tells us more. It also tells us how "far" P is away from Q in KL-divergence measure.

Theorem 1.2 Let $P^* = Proj_{\Pi}(Q)$. Then, for all $P \in \Pi$,

$$\begin{aligned} Supp(P) &\subseteq Supp(P^*) \\ D(P||Q) &\geq D(P||P^*) + D(P^*||Q) \end{aligned}$$

Proof: Define $P_t = tP + (1-t)P^*$, where $t \in [0,1]$. It is clear that $D(P_t||Q) - D(P^*||Q) \ge 0$. Then

$$0 \leq \frac{1}{t} [D(P_t ||Q) - D(P^* ||Q)] \\ = \frac{d}{dt} D(P_t ||Q)|_{t=t' \in [0,t]}$$

by Mean Value Theorem. Since $t' \to 0$ as $t \to 0$,

$$\lim_{t \downarrow 0} \frac{d}{dt} D(P_t || Q) \ge 0$$

Now we compute $\frac{d}{dt}D(P_t||Q)$.

$$\frac{d}{dt}D(P_t||Q) = \sum_{a \in U} \frac{d}{dt}p_t(a)\log\frac{p_t(a)}{q(a)} + \sum_{a \in U} p_t(a)\frac{d}{dt}(\log p_t(a) - \log q(a))$$

Note that

$$\frac{d}{dt}p_t(a) = p(a) - p^*(a)$$
$$\frac{d}{dt}\log p_t(a) = \frac{1}{\ln 2}\frac{1}{p_t(a)}(p(a) - p^*(a))$$

Using these facts, we have

$$\frac{d}{dt}D(P_t||Q) = \sum_{a \in U} (p(a) - p^*(a)) \log \frac{p_t(a)}{q(a)} + \sum_{a \in U} \frac{1}{\ln 2} (p(a) - p^*(a))$$
$$= \sum_{a \in U} (p(a) - p^*(a)) \log \frac{p_t(a)}{q(a)}$$

Here, note that if $(\exists a)$ such that p(a) > 0 and $p^*(a) = 0$, then $\lim_{t\downarrow 0} \frac{d}{dt}D(P_t||Q) \to -\infty$, which contradicts the fact that $\frac{d}{dt}D(P_t||Q) \ge 0$. Hence, if p(a) > 0, then $p^*(a) > 0$ and therefore, $\operatorname{Supp}(P) \subseteq \operatorname{Supp}(P^*)$. This proves the first part of the theorem. Now we evaluate $\frac{d}{dt}D(P_t||Q)$ at t = 0.

$$\begin{aligned} \frac{d}{dt}D(P_t||Q)|_{t=0} &= \sum_{a \in U} p(a)\log\frac{p^*(a)}{q(a)} - p^*(a)\log\frac{p^*(a)}{q(a)} \\ &= \sum_{a \in U} p(a)\log\frac{p^*(a)}{q(a)}\frac{p(a)}{p(a)} - D(P^*||Q) \\ &= \sum_{a \in U} p(a)\log\frac{p(a)}{q(a)} - \sum_{a \in U} p(a)\log\frac{p(a)}{p^*(a)} - D(P^*||Q) \\ &= D(P||Q) - D(P||P^*) - D(P^*||Q) \ge 0 \end{aligned}$$

Hence, $D(P||Q) \ge D(P||P^*) + D(P^*||Q)$.

The following example will show that the inequality in Theorem 1.2 can be strict.

Example 1.3 Let $U = \{0,1\}$ and $\Pi = \{P : P(1) \le 1/2\}$. Choose $\varepsilon < 1/10$ and define the distribution Q as

$$Q = \begin{cases} 1 & \text{with prob. } 1 - \varepsilon \\ 0 & \text{with prob. } \varepsilon \end{cases}$$

Exercise 1.4 Show that

$$P^* = \begin{cases} 1 & \text{with prob. } 1/2 \\ 0 & \text{with prob. } 1/2 \end{cases}$$

Exercise 1.5 Show that $D(P||Q) > D(P||P^*) + D(P^*||Q)$ for the above example.

Now we examine cases where the inequality in Theorem 1.2 is actually an equality.

Definition 1.6 For any given functions $f_1, f_2, ..., f_k$ on U and $\alpha_1, \alpha_2, ..., \alpha_k \in \mathbb{R}$, the set

$$\mathcal{L} = \{P : \sum_{a \in U} p(a)f_i(a) = \alpha_i, \ i \in [k]\}$$

is called a linear family of distributions.

Definition 1.7 Let Q be a given distribution. For any given functions $g_1, g_2, ..., g_k$ on U and $\lambda_1, \lambda_2, ..., \lambda_k \in \mathbb{R}$, the set

$$\mathcal{E}_Q = \{P : p(a) = c \cdot Q(a) \exp(\sum_{i=1}^k \lambda_i g_i(a))\}$$

is called an **exponential family** of distributions.

Theorem 1.8 Let \mathcal{L} be a linear family given by

$$\mathcal{L} = \{P : \sum_{a \in U} p(a) f_i(a) = \alpha_i, \ i \in [k]\}$$

and $\bigcup_{P \in \mathcal{L}} supp(P) = U$. Then the I-Projection P^* of Q onto \mathcal{L} satisfies the Pythagorean identity

$$D(P||Q) = D(P||P^*) + D(P^*||Q)$$

Moreover, $P^* = Proj_{\mathcal{L}}(Q) \in \mathcal{E}_Q(f_1, ..., f_k).$

Proof: We will only prove the Pythagorean identity. It suffices to prove that for all $P \in \mathcal{L}$ there exists a small $\beta > 0$ such that for $t \in [-\beta, 0]$, $P_t = tP + (1 - t)P^* \in \mathcal{L}$. This is because if this were true, then $\frac{d}{dt}D(P_t||Q)|_{t=0} = 0$ by the minimality of P^* , which in turn implies the equality $D(P||Q) = D(P||P^*) + D(P^*||Q)$.

Now we find β for a given $P \in \mathcal{L}$. Recall that $supp(P) \subseteq supp(P^*)$ and $p_t(a) = tp(a) + (1-t)p^*(a)$. Since $p_t(a) \ge 0$, we want to show that for $t \in [-\beta, 0]$

$$t(p(a) - p^*(a)) \ge -p^*(a)$$

Note that above inequality clearly holds if $p(a) - p^*(a) < 0$. Now choose β such that

$$\beta = \min_{a:p(a)-p^*(a)>0} \left\{ \frac{p^*(a)}{p(a)-p^*(a)} \right\}$$

Notice that $\beta > 0$ since if $p^*(a) = 0$, then p(a) = 0. Hence, $P_t \in \mathcal{L}$ for $t \in [-\beta, 0]$ and therefore, $D(P||Q) = D(P||P^*) + D(P^*||Q)$.

Let Q be a uniform distribution on U. Then,

$$D(P||Q) = \log|U| - H(P)$$

Hence, P^* is a distribution that maximizes entropy. In general, when the given information does not uniquely determine a distribution, we choose P^* that maximizes entropy. This is because P^* , being the projection of Q onto the set of distributions Π , is subject to the least amount of additional assumptions. This is known as the **Maximum Entropy Principle**.

2 Parameter Estimation

Let P_{θ} be a distribution which depends on the parameter θ . For example,

$$P_{\theta} = \begin{cases} 1 & \text{with prob. } \theta \\ 0 & \text{with prob. } 1 - \theta \end{cases}$$

We want to estimate the true parameter θ . So we design estimators $T: U \to \mathbb{R}$.

Definition 2.1 An estimator T is unbiased if

$$\mathbb{E}_{x \sim P_{\theta}^{n}}[T(x) - \theta] = 0$$

Example 2.2 Let $x = (x_1, ..., x_n) \sim P_{\theta}^n$ for a distribution P_{θ} which is 1 with probability θ and 0 otherwise. Then the following estimators are all unbiased.

$$T_{1} = x_{1}$$

$$T_{2} = \frac{x_{1} + x_{2} + x_{17}}{3}$$

$$T_{3} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

Definition 2.3 The variance of an estimator T is defined as

$$\operatorname{Var}(T) = \mathop{\mathbb{E}}_{x \sim P_{\theta}^{n}} [(T - \mathop{\mathbb{E}} T)^{2}]$$

Ideally, we would like an unbiased estimator with small variance. However, there is a limit to how small the variance can be if we have an unbiased estimator. This is given by the Cramér-Rao lower bound. To state this inequality, we will first need a few definitions.

Definition 2.4 Score function $v_{\theta}: U \to \mathbb{R}$ is defined as

$$v_{\theta}(a) = \frac{d}{d\theta} \ln p_{\theta}(a) = \frac{1}{p_{\theta}(a)} \frac{d}{d\theta} p_{\theta}(a)$$

Note that a larger score is given to perturbations in small probabilities.

Definition 2.5 Fisher information $J(\theta)$ is defined as

$$J(\theta) = \mathop{\mathbb{E}}_{x \sim P_{\theta}^{n}} [v_{\theta}(x)^{2}]$$

Theorem 2.6 (Cramér-Rao) For any unbiased estimator T estimating the true parameter θ ,

$$\mathsf{Var}(T) \geq \frac{1}{J(\theta)}$$

Proof: Just two lines. By Cauchy-Schwarz,

$$(\mathbb{E}[(v_{\theta} - \mathbb{E} v_{\theta})(T - \mathbb{E} T)])^{2} \leq \mathbb{E}[(v_{\theta} - \mathbb{E} v_{\theta})^{2}] \mathbb{E}[(T - \mathbb{E} T)^{2}]$$

= $J(\theta) \operatorname{Var}(T)$

Exercise 2.7 Show that

$$\mathbb{E}[(v_{\theta} - \mathbb{E} v_{\theta})(T - \mathbb{E} T)] = 1$$