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1 I-Projections and applications

We first review I-Projections from last lecture.

Definition 1.1 Let Π be a closed convex set of distributions over U . In addition, assume that
Supp(P ) ⊆ Supp(Q) for all P ∈ Π, and Supp(Q) = U . Then

ProjΠ(Q) = arg min
P∈Π

D(P ||Q) = P ∗

We proved in last lecture that P ∗ exists and is unique. It is immediate from definition that if
P ∈ Π, then D(P ||Q) ≥ D(P ∗||Q). In fact, P ∗ tells us more. It also tells us how “far” P is away
from Q in KL-divergence measure.

Theorem 1.2 Let P ∗ = ProjΠ(Q). Then, for all P ∈ Π,

Supp(P ) ⊆ Supp(P ∗)

D(P ||Q) ≥ D(P ||P ∗) +D(P ∗||Q)

Proof: Define Pt = tP + (1 − t)P ∗, where t ∈ [0, 1]. It is clear that D(Pt||Q) −D(P ∗||Q) ≥ 0.
Then

0 ≤ 1

t
[D(Pt||Q)−D(P ∗||Q)]

=
d

dt
D(Pt||Q)|t=t′∈[0,t]

by Mean Value Theorem. Since t′ → 0 as t→ 0,

lim
t↓0

d

dt
D(Pt||Q) ≥ 0

Now we compute d
dtD(Pt||Q).

d

dt
D(Pt||Q) =

∑
a∈U

d

dt
pt(a) log

pt(a)

q(a)
+

∑
a∈U

pt(a)
d

dt
(log pt(a)− log q(a))
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Note that

d

dt
pt(a) = p(a)− p∗(a)

d

dt
log pt(a) =

1

ln 2

1

pt(a)
(p(a)− p∗(a))

Using these facts, we have

d

dt
D(Pt||Q) =

∑
a∈U

(p(a)− p∗(a)) log
pt(a)

q(a)
+

∑
a∈U

1

ln 2
(p(a)− p∗(a))

=
∑
a∈U

(p(a)− p∗(a)) log
pt(a)

q(a)

Here, note that if (∃a) such that p(a) > 0 and p∗(a) = 0, then limt↓0
d
dtD(Pt||Q) → −∞, which

contradicts the fact that d
dtD(Pt||Q) ≥ 0. Hence, if p(a) > 0, then p∗(a) > 0 and therefore,

Supp(P ) ⊆ Supp(P ∗). This proves the first part of the theorem. Now we evaluate d
dtD(Pt||Q) at

t = 0.

d

dt
D(Pt||Q)|t=0 =

∑
a∈U

p(a) log
p∗(a)

q(a)
− p∗(a) log

p∗(a)

q(a)

=
∑
a∈U

p(a) log
p∗(a)

q(a)

p(a)

p(a)
−D(P ∗||Q)

=
∑
a∈U

p(a) log
p(a)

q(a)
−

∑
a∈U

p(a) log
p(a)

p∗(a)
−D(P ∗||Q)

= D(P ||Q)−D(P ||P ∗)−D(P ∗||Q) ≥ 0

Hence, D(P ||Q) ≥ D(P ||P ∗) +D(P ∗||Q).

The following example will show that the inequality in Theorem 1.2 can be strict.

Example 1.3 Let U = {0, 1} and Π = {P : P (1) ≤ 1/2}. Choose ε < 1/10 and define the
distribution Q as

Q =

{
1 with prob. 1− ε
0 with prob. ε

Exercise 1.4 Show that

P ∗ =

{
1 with prob. 1/2

0 with prob. 1/2

Exercise 1.5 Show that D(P ||Q) > D(P ||P ∗) +D(P ∗||Q) for the above example.

Now we examine cases where the inequality in Theorem 1.2 is actually an equality.
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Definition 1.6 For any given functions f1, f2, ..., fk on U and α1, α2, ..., αk ∈ R, the set

L = {P :
∑
a∈U

p(a)fi(a) = αi, i ∈ [k]}

is called a linear family of distributions.

Definition 1.7 Let Q be a given distribution. For any given functions g1, g2, ..., gk on U and
λ1, λ2, ..., λk ∈ R, the set

EQ = {P : p(a) = c ·Q(a) exp(

k∑
i=1

λigi(a))}

is called an exponential family of distributions.

Theorem 1.8 Let L be a linear family given by

L = {P :
∑
a∈U

p(a)fi(a) = αi, i ∈ [k]}

and
⋃
P∈L supp(P ) = U . Then the I-Projection P ∗ of Q onto L satisfies the Pythagorean identity

D(P ||Q) = D(P ||P ∗) +D(P ∗||Q)

Moreover, P ∗ = ProjL(Q) ∈ EQ(f1, ..., fk).

Proof: We will only prove the Pythagorean identity. It suffices to prove that for all P ∈ L there
exists a small β > 0 such that for t ∈ [−β, 0], Pt = tP + (1 − t)P ∗ ∈ L. This is because if this
were true, then d

dtD(Pt||Q)|t=0 = 0 by the minimality of P ∗, which in turn implies the equality
D(P ||Q) = D(P ||P ∗) +D(P ∗||Q).

Now we find β for a given P ∈ L. Recall that supp(P ) ⊆ supp(P ∗) and pt(a) = tp(a)+(1− t)p∗(a).
Since pt(a) ≥ 0, we want to show that for t ∈ [−β, 0]

t(p(a)− p∗(a)) ≥ −p∗(a)

Note that above inequality clearly holds if p(a)− p∗(a) < 0. Now choose β such that

β = min
a:p(a)−p∗(a)>0

{ p∗(a)

p(a)− p∗(a)

}
Notice that β > 0 since if p∗(a) = 0, then p(a) = 0. Hence, Pt ∈ L for t ∈ [−β, 0] and therefore,
D(P ||Q) = D(P ||P ∗) +D(P ∗||Q).

Let Q be a uniform distribution on U . Then,

D(P ||Q) = log |U | −H(P )

Hence, P ∗ is a distribution that maximizes entropy. In general, when the given information does
not uniquely determine a distribution, we choose P ∗ that maximizes entropy. This is because P ∗,
being the projection of Q onto the set of distributions Π, is subject to the least amount of additional
assumptions. This is known as the Maximum Entropy Principle.
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2 Parameter Estimation

Let Pθ be a distribution which depends on the parameter θ. For example,

Pθ =

{
1 with prob. θ

0 with prob. 1− θ

We want to estimate the true parameter θ. So we design estimators T : U → R.

Definition 2.1 An estimator T is unbiased if

E
x∼Pnθ

[T (x)− θ] = 0

Example 2.2 Let x = (x1, ..., xn) ∼ Pnθ for a distribution Pθ which is 1 with probability θ and 0
otherwise. Then the following estimators are all unbiased.

T1 = x1

T2 =
x1 + x2 + x17

3

T3 =
1

n

n∑
i=1

xi

Definition 2.3 The variance of an estimator T is defined as

Var(T ) = E
x∼Pnθ

[(T − ET )2]

Ideally, we would like an unbiased estimator with small variance. However, there is a limit to how
small the variance can be if we have an unbiased estimator. This is given by the Cramér-Rao lower
bound. To state this inequality, we will first need a few definitions.

Definition 2.4 Score function vθ : U → R is defined as

vθ(a) =
d

dθ
ln pθ(a) =

1

pθ(a)

d

dθ
pθ(a)

Note that a larger score is given to perturbations in small probabilities.

Definition 2.5 Fisher information J(θ) is defined as

J(θ) = E
x∼Pnθ

[vθ(x)2]

Theorem 2.6 (Cramér-Rao) For any unbiased estimator T estimating the true parameter θ,

Var(T ) ≥ 1

J(θ)
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Proof: Just two lines. By Cauchy-Schwarz,

(E[(vθ − E vθ)(T − ET )])2 ≤ E[(vθ − E vθ)2]E[(T − ET )2]

= J(θ)Var(T )

Exercise 2.7 Show that
E[(vθ − E vθ)(T − ET )] = 1
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