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1 I-Projections and applications
We first review I-Projections from last lecture.

Definition 1.1 Let IT be a closed convex set of distributions over U. In addition, assume that
Supp(P) C Supp(Q) for all P € 11, and Supp(Q) = U. Then

Projp(Q) = argmin D(P||Q) =
Pell

We proved in last lecture that P* exists and is unique. It is immediate from definition that if
P €11, then D(P||Q) > D(P*||Q). In fact, P* tells us more. It also tells us how “far” P is away
from Q in KL-divergence measure.

Theorem 1.2 Let P* = Projg(Q). Then, for all P €11,

Supp(P) S Supp(P*)
D(P||Q) = D(P||P*)+ D(P|Q)

Proof: Define P, = tP + (1 — t)P*, where t € [0,1]. It is clear that D(P;||Q) — D(P*||Q) > 0
Then

[D(P]|Q) — D(P*|Q)]

= D(Pt”Q)’t t'€0,t]

~+ | =

S

by Mean Value Theorem. Since t' — 0 as t — 0,
li dD(PHQ) >0
im—
tl0 dt ! -
Now we compute %D(BHQ).

4 D(PIQ) = z @ pi(a) < (logp.(a) ~ log g(a)

aclU



Note that

Sn() = pla) ()
Gloem(e) = o —s(o() — (@)
Using these facts, we have
DN = Y ()~ (@) Z% p'(a)
acU ceU
_ a) — p*(a)) o pt(a)
= C;U(p( ) —p"(a))log 2(@)

Here, note that if (3a) such that p(a) > 0 and p*(a) = 0, then limy | %D(PtHQ) — —o0, which
contradicts the fact that £D(P||Q) > 0. Hence, if p(a) > 0, then p*(a) > 0 and therefore,
Supp(P) C Supp(P*). This proves the first part of the theorem. Now we evaluate 4 D(P||Q) at
t=0.
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~ D(PIIQ)~ D(P[P") — D(P|Q) >
Hence, D(P||Q) > D(P||P*) + D(P*[|Q). "

The following example will show that the inequality in Theorem 1.2 can be strict.

Example 1.3 Let U = {0,1} and Il = {P : P(1) < 1/2}. Choose ¢ < 1/10 and define the

distribution @ as
Q- 1 with prob. 1 —¢
o with prob. €

Exercise 1.4 Show that
P 1 with prob. 1/2
10 with prob. 1/2
Exercise 1.5 Show that D(P||Q) > D(P||P*) + D(P*||Q) for the above example.

Now we examine cases where the inequality in Theorem 1.2 is actually an equality.



Definition 1.6 For any given functions fi, fo,..., f on U and a1, a9, ...,a € R, the set
L={P:) pla)fi(a) = a; i€ [k]}
acU
is called a linear family of distributions.

Definition 1.7 Let Q be a given distribution. For any given functions gi,¢go,...,gx on U and
AL, A2, oy A € R, the set

k
Eo = {P:p(a) = c-Q(a)exp(D_ Nigi(a))}
i=1
is called an exponential family of distributions.

Theorem 1.8 Let L be a linear family given by
L={P:) pla)fi(a) =, i € [k]}
acU
and Upc, supp(P) = U. Then the I-Projection P* of Q) onto L satisfies the Pythagorean identity
D(P||Q) = D(P||P") + D(P"[|Q)
Moreover, P* = Proj;(Q) € Eg(f1, ..., fx)-
Proof: We will only prove the Pythagorean identity. It suffices to prove that for all P € £ there
exists a small > 0 such that for t € [-3,0], P, = tP + (1 — t)P* € L. This is because if this
were true, then %D(PtHQ)h:o = 0 by the minimality of P* , which in turn implies the equality
D(P||Q) = D(P|[P*) + D(P*[|Q).
Now we find f3 for a given P € L. Recall that supp(P) C supp(P*) and p(a) = tp(a)+ (1 —1t)p*(a).
Since pi(a) > 0, we want to show that for ¢ € [—/3,0]
t(p(a) —p*(a)) = —p*(a)
Note that above inequality clearly holds if p(a) — p*(a) < 0. Now choose  such that
: p*(a)
b= min {7}
ap(a)—p*(a)>0 \ p(a) — p*(a)
Notice that 5 > 0 since if p*(a) = 0, then p(a) = 0. Hence, P, € L for t € [—f3,0] and therefore,
D(P||Q) = D(P||P*) + D(P*[|Q). u

Let @ be a uniform distribution on U. Then,
D(P||Q) = log|U| — H(P)

Hence, P* is a distribution that maximizes entropy. In general, when the given information does
not uniquely determine a distribution, we choose P* that maximizes entropy. This is because P*,
being the projection of Q onto the set of distributions II, is subject to the least amount of additional
assumptions. This is known as the Maximum Entropy Principle.



2 Parameter Estimation

Let Py be a distribution which depends on the parameter 6. For example,

1 with prob. 6
Py =
0  with prob. 1 -6

We want to estimate the true parameter 6. So we design estimators T : U — R.

Definition 2.1 An estimator T is unbiased if

E [T(z)—6] =0

T~ Py

Example 2.2 Let v = (x1,...,x,) ~ Py for a distribution Py which is 1 with probability 6 and 0
otherwise. Then the following estimators are all unbiased.

Thn =
T, = x1+x§+m17

1 n
T3 = nZ;xZ
1=

Definition 2.3 The variance of an estimator T is defined as

Var(T) = E [(T —ET)?

x~ Py

Ideally, we would like an unbiased estimator with small variance. However, there is a limit to how
small the variance can be if we have an unbiased estimator. This is given by the Cramér-Rao lower
bound. To state this inequality, we will first need a few definitions.

Definition 2.4 Score function vg : U — R is defined as

(@) = = I po(a) = p;a) “po(a)

Note that a larger score is given to perturbations in small probabilities.

Definition 2.5 Fisher information J(0) is defined as

J(0)= E [vg(2)’]

.
z~ Py

Theorem 2.6 (Cramér-Rao) For any unbiased estimator T estimating the true parameter 0,

1
Var(T) > N0}



Proof: Just two lines. By Cauchy-Schwarz,

(E[(vg —Evg)(T —ET)))?* < E[(vg — Evg)2] E[(T —ET)?
J(0) Var(T)

Exercise 2.7 Show that
E[(vg —Evg)(T —ET)] =1



