
Information and Coding Theory Autumn 2014

Lecture 11: November 4, 2014

Lecturer: Madhur Tulsiani Scribe: Ridwan Syed

1 Finite Field Algebra, Vector Spaces, and Polynomials

1.1 Finite Fields

Definition 1.1 A field is a set F along with two binary operations +, addition, and ·, multiplica-
tion, such that the following ”field axioms” hold:

• For all x, y ∈ F , x+ y = y + x and x · y = y · x.

• For all x, y, z ∈ F , (x+ y) + z = x+ (y + z) and (x · y) · z = x · (y · z).

• For all x, y, z ∈ F , x · (y + z) = (x · y) + (x · z).

• There exists a unique element 0 ∈ F such that for all x ∈ F , x+ 0 = x.

• There exists a unique element 1 ∈ F such that for all x ∈ F , x · 1 = x.

• For all x ∈ F , there exists an element (−x) ∈ F such that x+ (−x) = 0.

• For all x ∈ F (excluding x = 0), there exists an element x−1 ∈ F such that x · x−1 = 1.

We often write xy or x(y) for x · y. If F is finite, we say it is a finite field.

Definition 1.2 Let p be a prime integer. Then we define the finite field of order p, Fp also denoted
GF(p) as follows:

• Fp = {0, 1, ..., p− 1}

• The operations +, · are performed modulo p (which we denote (mod p)) i.e. x + y is the
remainder of (x+ y)/p and similarly for x · y is the remainder of (x · y)/p.

The above definition can also be generalized to prime powers q = pn for some prime p and integer
n, but we will be mostly concerned with fields of prime order. We will frequently use the fact that
elements of Fp have multiplicative inverses, and it is useful to verify this fact.

Proposition 1.3 For all non-zero a ∈ Fp, there exists b ∈ Fp such that ab = 1 (mod p).

Proof: Consider the multiples of a in Fp: a, 2a, ..., (p − 1)a (mod p). There are p − 1 of these
multiples, and each of these is distinct. Moreover, none of these products is 0. Hence, exactly one
of these products is equal to 1, and thus there exists b such that ab = 1 (mod p).

Exercise 1.4 (Fermat’s Little Theorem) Let p be prime. Prove that for all a ∈ Fp, ap =
a (mod p).

1

1.2 Vector Spaces

Definition 1.5 A vector space V over field F , is a a collection of tuples from Fn
p . For v, w ∈ V ,

we define addition coordinate-wise i.e. v + w = (v1 + w1, v2 + w2, ..., vn + wn). For v, w ∈ V , we
define their inner product ·, as v · w =

∑n
i=1 viwi (mod p).

Note that in this case, V is not a Hilbert Space. In particular, there is no good notion of angles
between vectors in this space.

1.3 Univariate Polynomials

Definition 1.6 A polynomial P , is an expression of the form,

P (x) = c0 + c1x+ c2x
2 + ...+ cp−1x

p−1

where the coefficients c0, ..., cp−1 are constants in Fp, and x is a variable in Fp. We denote by
Fp[x] the collection of all univariate polynomials over field Fp.

Notice that by Fermat’s Little Theorem, all powers of x greater than p−1 collapse to lower powers.
For d ≤ p − 1 we say P is of degree d if the largest power of x with non-zero coefficient is d. We
will make use of the following two facts about polynomials:

Fact 1.7 If P is non-zero and a degree d polynoimial in Fp[x], then there are at most d values of
x ∈ Fp such that P (x) = 0. Such points are called the roots of P .

Fact 1.8 (Lagrange Interpolation) A degree d polynomial is uniquely determined by d+ 1 val-
ues. In particular: let a1, ..., ad+1 be distinct points in Fp and let b1, ..., bd+1 ∈ Fp be arbitrary.
Then, there exists a unique degree d polynomial Q ∈ Fp[x] such that for all i ∈ [d+ 1], Q(ai) = bi.

First we prove fact 1.7:

Proof: We argue by induction on degree.
Base case: Suppose d = 0. Then, P (x) = c0 is constant. Since P is non-zero, P has no roots.
Induction: Now, suppose all polynomials of degree at most d− 1 have at most d− 1 roots. Let P
be of degree d, and let a be a root of P . We can divide out the polynomial x− a and obtain:

P (x) = (x− a)P ′(x) +R(x)

where P ′ and R are polynomials, and R has degree less than x − a. Thus, R is a constant. Then
we have that:

P (a) = (a− a)P ′(a) +R(a) = R(a)

Since P (a) = 0 and R is constant, R must be identically 0. Therefore,

P (x) = (x− a)P ′(x)

Since P is of degree d, P ′ is of degree at most d − 1 and by the inductive hypothesis has at most
d− 1 roots. Hence, by induction P has at most d roots.

2

Now the proof of fact 1.8:

Proof: Suppose we are given distinct a1, ..., ad+1 ∈ Fp and arbitrary b1, ..., bd+1 ∈ Fp. First, we
prove the existence of a polynomial Q(x), such that for all i ∈ [d+ 1], Q(ai) = bi. Define Q(x) as :

Q(x) =
d+1∑
i=1

bi ·
(

Πj 6=i(x− aj)
Πj 6=i(ai − aj)

)

Notice that when x = ai,
(

Πj 6=i(x−aj)
Πj 6=i(ai−aj)

)
= 1, and otherwise this ratio is 0. Thus for all i ∈ [d+ 1],

Q(ai) = bi.
Now we show uniqueness. Suppose for contradiction there exists Q′ s.t. Q 6= Q′ and for all
i ∈ [d+ 1], Q(ai) = Q′(ai) = bi. Then, P (x) = Q(x)−Q′(x) is of degree at most d, but P has d+ 1
roots : a1, ..., ad+1. By contradiction, Q(x) is unique.

2 Error Correcting Codes

Suppose Alice wants to send Bob a message over a noisy channel, where some of the bits in Alice’s
message may become corrupted. Let’s assume that Alice’s message, is a sequence of elements of Fp

for some prime p. There are two models for how the message may become corrupted.

2.1 Shannon Model

Let m = m1m2....mk be a string where each mi ∈ Fp. In the Shannon Model, Alice sends m
over the communication channel, and each mi is corrupted independently (though not necessarily
identical distributions for each bit) at random.

Example 2.1 (Binary Symmetric Channel) Suppose the message is a tuple from F2. Then,
for some ε ∈ [0, 1

2], each bit is flipped independently at random with probability ε, and is transmitted
without error with probability 1− ε.

We will work with a different model, which is more relevant for some of the applicatios in theoretical
computer science.

2.2 Hamming Model

Suppose Alice sends k symbols m1m2....mk from Fp. In the Hamming Model, up to t of these
symbols are corrupted (but not lost) in some arbitrary manner. There is no way to know which
of the symbols have been corrupted, and which symbols were transmitted correctly. We wish to
design encoding and decoding schemes to recover up to t errors for some fixed t.

Definition 2.2 A code is a function C : Fk
p → Fn

p , where n ≥ k. We call k the message length and

n the block length. We call R(C) = k
n the rate of C.

Our goal is to introduce some redundancies to our message such that we can uniquely recover the
correct k symbols given that up to t bits from the n bit message may be corrupted.

3

Example 2.3 Define C : F4
2 → F12

2 as

C(x1x2x3x4) = (x1x1x1x2x2x2x3x3x3x4x4x4)

The rate of this code is 1
3 . In general we’d like to keep this rate close to 1, as this would imply we

introduce fewer redundancies to the encoded message. It is easy to see that the above code can
handle one error. When Bob receives the string, he simply takes the majority of each block of three
symbols and thus recovers the original message. As we shall see, no more than one error can be
recovered using this code.

Another way to think about a code C is as a subset of Fn
p :C = {C(x) : x ∈ Fn

p}.

Definition 2.4 Let δ(x, y) denote the Hamming distance of two strings x, y. We define the distance
of a code ∆(C) as

∆(C) = minx 6=yδ(x, y)

where x, y ∈ C.

Remark 2.5 The hamming distance δ is a metric on strings of a fixed length, and in particular
satisfies the triangle inequality.

Theorem 2.6 A code C : Fk
p → Fn

p can correct t errors if and only if ∆(C) ≥ 2t+ 1.

Note that for the code in Example 2.3, ∆(C) = 3. This implies that the code from Example 2.3
can handle no more than one error. We now prove the bound:

Proof: First, we prove the reverse direction. If ∆(C) ≥ 2t+1, then ∆(C)
2 > t. For each codeword

x ∈ C let H(x, r) = {y ∈ Fn
p : δ(x, y) < r}. In particular consider the case when we let r = ∆(C)

2 .
Notice that for two distinct x, x′ ∈ C, H(x, r) ∩ H(x′, r) = ∅, since otherwise, δ(x, x′) < ∆(C).

Now, suppose a codeword is corrupted in t bits to the string y. Since t < ∆(C)
2 , we have that

the corrupted message y is contained in precisely one H(x, r). Thus, we can simply check which
codeword’s H(x, r) y is contained in and obtain the original codeword x.
Now, we prove the forward direction. Suppose the codeword x ∈ C is corrupted in t bits to y.
We know that δ(x, y) ≤ t. Since we can correct up to t errors, we know that we can find w ∈ C
such that w = argminz∈C(δ(y, z)). Now, this implies that δ(w, y) > δ(x, y) ⇒ δ(w, x) − δ(x, y) >
δ(x, y)⇒ δ(w, x) > 2δ(x, y)⇒ δ(w, x) ≥ 2δ(x, y) + 1⇒ ∆(C) ≥ 2t+ 1.

4

