
Information and Coding Theory Autumn 2014

Lecture 12: November 6, 2013

Lecturer: Madhur Tulsiani Scribe: David Kim

Recall: We were looking at codes of the form C : Fk
q → Fn

q , where q is prime, k is the message
length, and n is the block length of the code. We also saw C (its range) as a set in Fn

q and defined
the distance of the code as

∆(C) := min
x,y∈C,x6=y

{∆(x, y)}

where ∆(x, y) is the Hamming distance between x and y. We showed that a code C can correct t
errors iff ∆(C) ≥ 2t+ 1.

1 Hamming Code

The following is an example of the Hamming Code from F4
2 to F7

2:

Example 1.1 Let C : F4
2 → F7

2, where

C(x1, x2, x3, x4) = (x1, x2, x3, x4, x2 + x3 + x4, x1 + x3 + x4, x1 + x2 + x4).

Note that each element of the image is a linear function of the xi’s, i.e., one can express C with
matrix multiplication as follows:

C(x1, x2, x3, x4) =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1




x1
x2
x3
x4



Definition 1.2 (Linear Codes) A code C : Fk
q → Fn

q is a linear code if for all u, v ∈ Fk
q and

α ∈ Fq, C(αu+ v) = αC(u) + C(v), and thus the image of C is a subspace of Fn
q .

Since a linear code is a linear map from a finite dimensional vector space to another, we can write
it as a matrix of finite size. That is, there is a corresponding G ∈ Fn×k

q s.t. C(x) = Gx for all

x ∈ Fk
q . If the code has nonzero distance, then the rank of G must be k (otherwise there exist

x, y ∈ Fk
q such that Gx = Gy). Hence, the null space of GT has dimension n− k, so let b1, . . . , bn−k

be a basis of the null space of GT .

Definition 1.3 (Parity Check Matrix) Let b1, . . . , bn−k be a basis for the null space of GT cor-

responding to a linear code C. Then H ∈ F(n−k)×n
q , defined by

HT =
[
b1 b2 . . . bn−k

]
is called the parity check matrix of C.

1

Since GTHT = 0 ⇔ HG = 0, we have (HG)x = 0 for all x ∈ Fk
q , i.e., Hz = 0 for all z ∈ C.

Moreover, since the columns of HT are a basis for the null-space of GT , we have that

z ∈ C ⇔ Hz = 0 .

So the parity check matrix gives us a way to quickly check a codeword, by checking the parities of
some bits of z (each row of H gives a parity constraint on z). Also, one can equivalently define a
linear code by either giving G or the parity check matrix H.

Example 1.4 The parity check matrix of our example Hamming Code is:

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


Note that the ith column is the integer i in binary. One can easily check that HG = 0.

Now suppose z = (z1, . . . , z7)
T is our codeword and we make a single error in the ith entry. Then

the output codeword with the error is

z + ei =


z1
...
zi
...
z7

+


0
...
1
...
0


and H(z + ei) = Hz +Hei = Hei = Hi, the ith column of H, which reads i in binary. So this is a
very efficient decoding algorithm just based on parity checking. Since the Hamming code (C) can
correct at least t = 1 errors, we must have that ∆(C) ≥ 2t + 1 = 3. Verify that the distance is
exactly 3 using the following characterization of distance for linear codes.

Exercise 1.5 For z ∈ Fn
q , let wt(z) = |{i ∈ [n] | zi 6= 0}|. Prove that for a linear code C

∆(C) = min
z∈C

wt(z) .

One can generalize the Hamming code to larger message and block lengths, we can create a parity

matrix H ∈ F(n−k)×n
q , where the ith column reads i in binary.

2 Hamming Bound

We now show an optimality bound on the size of the code, starting with the case of distance-3
codes and then generalizing to distance-d codes.

2

Theorem 2.1 Let C : Fk
2 → Fn

2 be any distance-3 code, i.e., ∆(C) = 3. Then

|C| = 2k ≤ 2n

n+ 1

Proof: For each z ∈ C, let B(z) be the ball of size n+ 1 consisting of z and the n elements in Fn
2

(not in C), each at distance 1 from z. Then the balls formed by the codewords in C are disjoint,
if B(z) and B(z′) intersect, then ∆(z, z′) ≤ 2 by triangle inequality. For each codeword z ∈ C, we
have |B(z)| = n+ 1 codes, so |C|(n+ 1) ≤ 2n.

Note that our example hamming code from F4
2 to F7

2 satisfied |C| = 24 =
27

8
, so it was an optimal

distance-3 code. Generalizing to distance-d codes, we have:

Theorem 2.2 (Hamming Bound) Let C : Fk
2 → Fn

2 be any distance-d code, i.e., ∆(C) = d.
Then

|C| = 2k ≤ 2n

vol
(
Bb d

2
c

)
where vol

(
Bb d

2
c

)
=
∑b d

2
c

i=1

(
n
i

)
is the number of codes at distance at most bd2c from any fixed codeword

z ∈ C.

Remark 2.3 The Hamming bound also gives us a bound on the rate of the code in terms of entropy

(recall: the rate of the code is k
n). Let d = δn for δ ≤ 1

2 . Since
∑l

i=1

(
n
i

)
≤ 2nH(l

n
) for l ≤ n

2 , we
have:

k

n
≤ 1−H(δ/2) + o(1).

3 Reed-Solomon Code

We now look at Reed-Solomon codes over Fq. These are optimal codes which can achieve a very
large distance. However, they have a drawback that they need q ≥ n.

Definition 3.1 (Reed-Solomon Code) Assume q ≥ n and fix S = {a1, . . . , an} ⊆ Fq, distinct
s.t. |S| = n. For each message (m0, . . . ,mk−1) ∈ Fk

q , consider the polynomial P (x) = m0 +m1x+

· · ·+mk−1x
k−1. Then the Reed-Solomon Code is defined as:

C(m0, . . . ,mk−1) = (P (a1), . . . , P (an)).

Remark 3.2 Reed-Solomon Codes can again be encoded using “inner codes” to create “concate-
nated codes”, which can work with smaller q. However, we will not discuss these.

Let’s compute the distance of the Reed-Solomon Code:

Claim 3.3 ∆(C) ≥ n− k + 1.

3

Proof: Consider C(m0, . . . ,mk−1) with P (x) = m0+m1x+ · · ·+mk−1x
k−1 and C(m′0, . . . ,m

′
k−1)

with P ′(x) = m′0 +m′1x+ · · ·+m′k−1x
k−1, where we assume (m0, . . . ,mk−1) 6= (m′0, . . . ,m

′
k−1) and

hence P 6= P ′. Then P − P ′ is a non-zero polynomial of degree at most k − 1 and has at most
k − 1 roots, i.e., P and P ′ agree on at most k − 1 points. This implies that C(m0, . . . ,mk−1) =
(P (a1), . . . , P (an)) and C(m′0, . . . ,m

′
k−1) = (P ′(a1), . . . , P

′(an)) differ on at least n− k + 1 places.
Since our choice of the messages was arbitrary, ∆(C) ≥ n− k + 1.

We now show that this is optimal:

Theorem 3.4 (Singleton Bound) Let C : Fk
q → Fn

q be a distance-d code. Then

d ≤ n− k + 1.

Proof: Consider the map Γ : Fk
q → Fn−d+1

q , where Γ(x) is the first n − d + 1 coordinates of
C(x). Then for all x 6= y, we have Γ(x) 6= Γ(y), since ∆(C(x), C(y)) ≥ d. Therefore, |img(Γ)| =
|Fn−d+1

q | ≥ |Fk
q |.

Remark 3.5 If n = 2k, then for d = k + 1, we can correct bk2c errors using the Reed-Solomon
Code, and this is optimal. Moreover, the Reed-Solomon Code is a linear code:

C(m0, . . . ,mk−1) =

 1 a1 a21 . . . ak−11
...

...
...

. . .
...

1 an a2n . . . ak−1n




m0

m1
...

mk−1


4 Berlekamp-Welch Decoding Algorithm

If the codewords output by the Reed-Solomon code did not contain any errors, we could simply use
Lagrange interpolation to recover the messages. However, we must be able to handle noise, and
the trick is to work with a hypothetical error-locator polynomial telling us where the error is.

Definition 4.1 (Error-locator Polynomial) An error-locator polynomial, E(x), is a polynomial
which satisfies

∀i ∈ [n] E(ai) = 0⇔ yi 6= P (ai)

for all i = 1, . . . , n, where yi is the ith element of the output Reed-Solomon Code obtained with
noise.

Note that this directly implies that yiE(ai) = P (ai)E(ai) for all ai ∈ S. Let’s denote Q as
Q(x) := P (x)E(x). In the next lecture, we will discuss the following algorithm by Berelekemp and
Welch [1], which uses the above intuition to decode a message with at most b(n− k+ 1)/2c errors.

Algorithm 4.2 Find Q,E with deg(E) ≤ t and deg(Q) ≤ k − 1 + t s.t. yiE(ai) = Q(ai) for all

i = 1, . . . , n. Output
Q

E
.

4

References

[1] L.R. Welch and E.R. Berlekamp. Error correction for algebraic block codes, December 30 1986.
US Patent 4,633,470.

5

