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Let q ≥ n, the Reed-Solomon code over Fq is a linear code C : Fk
q → Fn

q defined as follows: fix
{a1, . . . , an} ⊆ Fq, to encode a message (m0, . . . ,mk−1), identify it with P (x) = m0 + m1x + · · ·+
mk−1x

k−1 and C maps it to the codeword (P (a1), P (a2), . . . , P (an)). In the last lecture we showed
that C has distance d = n− k+ 1, which is optimal under Singleton bound. We will see the unique
decoding and list-decoding algorithms for Reed-Solomon codes up to bn−k2 c (which is bd−12 c) and

n− 2
√
kn errors respectively.

1 Unique decoding Reed-Solomon

We show that the following algorithm by Berlekemp and Welch [2] decodes Reed-Solomon codes up
to t errors when t ≤ bn−k2 c. Note that the message (m0, . . . ,mk−1) is identified with the polynomial

P (x) =
∑k−1

i=0 mix
i. Let (P (a1), . . . , P (an)) be the original codeword and let y = (y1, . . . , yn) be

it’s corrupted version (we only know y). The distance between them is at most t.

Unique decoding for Reed-Solomon codes
Input: {(ai, yi)}i=1,...,n

1. Find E,Q ∈ Fq[x] such that E 6≡ 0, deg(E) ≤ t, deg(Q) ≤ k − 1 + t

∀i ∈ [n] Q(ai) = yi · E(ai) .

2. Output Q
E .

We first observe that Step 1 in the algorithm can be done by solving linear system. Let E(x) =
e0 + e1x + · · · + etx

t and Q(x) = q0 + q1x + · · · + qk−1+tx
k−1+t. Then for each given (ai, yi), the

equation Q(ai) = yiE(ai) is linear in variables e0, . . . , et and q0, . . . , qk−1+t. Note that such system
is homogeneous and hence it always has a trivial solution. We need to show that there is a solution
with nonzero E.

Lemma 1.1 There exists (E,Q) that satisfies the conditions in Step 1 of the algorithm.

Proof: Let I = {i ∈ [n] | P (ai) 6= yi} and E∗ =
∏

i∈I(x − ai) (in particular, E∗ ≡ 1 if I is
empty). Let Q∗ = P · E∗. Then for all i ∈ [n], we have yiE

∗(ai) = P (ai) · E∗(ai) = Q∗(ai).

If there is a unique nonzero solution to the linear system in Step 1, then Step 2 outputs the
correct polynomial. But in general there can be more than one such solution. The following lemma
guarantees the correctness of Step 2.
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Lemma 1.2 For any two solutions (Q1, E1) and (Q2, E2) that satisfy the conditions in Step 1,

Q1

E1
=

Q2

E2
.

Proof: It suffices to show Q1E2 = Q2E1. Indeed, since they satisfy the equation Q(ai) = yiE(ai)
for each i ∈ [n], we have

(Q1E2)(ai) = yiE1(ai)E2(ai) = (E1Q2)(ai)

for each i ∈ [n]. It implies that they must be the same as there are n zeros of Q1E2−Q2E1 but its
degree is at most k + 2t− 1 ≤ k + 2bn−k2 c − 1 ≤ n− 1.

2 List-decoding

The decoding algorithm in the previous section requires the number of errors to be at most bn−k2 c,
i.e. it requires error rate to be less than rougly 1

2(1− k
n) ≈ 1

2 . But for some applications, we want
to decode the corrupted codeword even when the error rate is close to 1. In this case, there can
be multiple possible codewords correspond to the corrupted codeword. It leads to the notion of
list-decodable code.

Definition 2.1 (list-decodable) For e ∈ (0, 1). A code C ⊆ Σn is an (e, `)-list-decodable code if∣∣∣∣{c ∈ C | ∆(x, c)

n
≤ e
}∣∣∣∣ ≤ `

for all x ∈ Σn

Note that when ` = 1, list-decodable reduces to unique decodable. For most application, we would
like to have a code with small (polynomial in n) list size ` under large error rate e. We state without
proof the following result that relates the parameters of the code, error rate and the list size.

Theorem 2.2 (Johnson bound) Let C be a [n, k, d]q code. If

e ≤
(

1− 1

q

)(
1−

√
1− q

q − 1
· d
n

)
,

then C is (e, dqn)-decodable.

Recall that Reed-Solomon code is a [n, k, n− k + 1]q-code where q ≥ n, which gives e ≈ 1−
√
k/n

and thus Johnson bound says that it is list-decodable (with list size polynomial in n and q) up to
error rate 1−

√
k/n, which is much larger than the error rate 1

2(1− k
n) in the unique decoding case.
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3 List-decoding Reed-Solomon Codes

We show that the following algorithm by Sudan [1] list-decodes Reed-Solomon codes up to error
rate 1− 2

√
k/n.

List-decoding for Reed-Solomon codes
Input: {(ai, yi)}i=1,...,n

1. Find nonzero Q ∈ Fq[x, y] such that degx(Q) ≤
√
kn, degy(Q) ≤

√
n
k and Q(ai, yi) = 0

for each i ∈ [n].

2. Compute all factors of Q that are of the form y − f(x).

3. Output all f from Step 2 such that {i ∈ [n] | f(ai) = yi}| ≥ 2
√
kn.

Lemma 3.1 There exists Q(x, y) that satisfies the conditions in Step 1 of the algorithm.

Proof: We observe that finding Q is again equivalent to solving linear system. By writing
Q(x, y) =

∑
0≤i≤

√
kn

∑
0≤j≤
√

n/k
ci,jx

iyj , the equation Q(ai, yi) = 0 for i ∈ [n] gives n linear

equations in the coefficients ci,j ’s. Note that there are (
√
kn + 1)(

√
n/k + 1) > n unknowns and

n equations. Since ci,j = 0 for all i, j is a solution, i.e. there exists at least one solution, it follows
that there exist many solutions and one of them must be nonzero.

Lemma 3.2 Let Q ∈ Fq[x, y] that satisfies the conditions in Step 1 of the algorithm. If deg(f) < k
and |{i ∈ [n] | f(ai) = bi}| ≥ 2

√
kn, then y − f(x)|Q(x, y).

Proof: Let I = {i ∈ [n] | f(ai) = yi}. Then Q(ai, f(ai)) = 0 for all i ∈ I. It follows
that the univariate polynomial Q(x, f(x)) has at least |I| ≥ 2

√
kn roots. But Q(x, f(x)) has

degree less than degx(Q) + deg(f) degy(Q) <
√
kn + k

√
n/k = 2

√
kn. Thus Q(x, f(x)) ≡ 0. It

follows that y − f(x)|Q(x, y). Indeed, we can write Q(x, y) = (y − f(x))A(x, y) + R(x, y) where
degy(R) < degy(y − f(x)) = 1. So R(x, y) does not depend on y. Now Q(x, f(x)) ≡ 0 implies
R(x, y) = R(x) ≡ 0.

Remark 3.3 The algorithm can be implemented in polynomial time. Step 1 is just solving linear
system. For Step 2, there exists efficient algorithm for finding factors of such form. And the
number of factors are bounded by degy(Q), which is polynomial in n, so we can afford to check all
the factors in Step 3 to see whether they are closed to the corrupted codeword.

4 Reed-Muller codes

One limitation of Reed-Solomon code is that it requires large field, in particular, q ≥ n. Reed-
Muller codes are generalization of Reed-Solomon codes that can be defined on any field size, even
over F2.
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Specifically, a Reed-Muller code RMq(r,m) : F(m+r
r )

q → Fqm
q is a linear code over Fq. The message

(ci1,...,in)0≤i1+···+in≤r is identified with the polynomial

Q(x) = Q(x1, . . . , xm) =
∑

0≤i1+···+im≤r
ci1,...,imx

i1
1 · · ·x

im
m ,

which is a multivariate polynomial of total degree at most r in m variables. RMq(r,m) maps Q
to (Q(x))x∈Fm

q
, i.e. the codeword is the evaluation of Q over all points in Fm

q . We will see the
parameters and decoding algorithm for it in the next lecture.
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