Lecture 14: November 13, 2014
Lecturer: Madhur Tulsiani
Scribe: Behnam Neyshabur

1 A different definition of Reed-Solomon codes

Let $C: \mathbb{F}_{q}^{k} \rightarrow \mathbb{F}_{q}^{n}$ be a coding where $q \geq n$. Fix a subset $S \subseteq \mathbb{F}_{q}$ such that $|S|=n$, i.e. $S=\left\{a_{1}, \ldots, a_{n}\right\}$. For any m_{0}, \ldots, m_{k-1}, consider the following polynomial:

$$
P(x)=m_{0}+m_{1} x+m_{2} x^{2}+\cdots+m_{k-1} x^{k-1}
$$

We define the coding C as

$$
C\left(m_{0}, \ldots, m_{k-1}\right)=\left(P\left(a_{1}\right), P\left(a_{2}\right), \ldots, P\left(a_{n}\right)\right)
$$

Fix a subset $H \subseteq \mathbb{F}_{q}$ such that $|H|=k$. We treat the values of a polynomial P on H as the function $f: H \rightarrow \mathbb{F}_{q}$. Let P be the unique degree $k-1$ polynomial such that for all $\ell \in H, P(\ell)=f(\ell)$. We want to output $\left\{P\left(a_{1}\right), P\left(a_{2}\right), \ldots, P\left(a_{n}\right)\right\}$. This can be done by solving a set of k linear equation of the form $A X=b$.
The problem with Reed-Solomon codes is that q should be large ($q \geq n$). However, in practice we can only transmit only bits or symbols over a small alphabet. Reed-Muller introduced below help reduce the alphabet size to some extent. Moreover, they allow for a very interesting notion of decoding which we call "local decoding".

2 Reed-Muller codes

Fix $H \subseteq \mathbb{F}_{q}$ such that $|H|=h$. Let $C: \mathbb{F}_{q}^{h^{m}} \rightarrow \mathbb{F}_{q}^{q^{m}}$ be a coding where parameters q, h and m can be defined to get a reasonable performance. Given a list of h^{m} values in \mathbb{F}_{q} as the input, we treat them as a function $f: H^{m} \rightarrow \mathbb{F}_{q}$. We want to find the unique polynomial $P \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{m}\right]$ such that for all $i, \operatorname{deg}_{x_{i}}(P) \leq h-1$ and for all $\ell_{1}, \ldots, \ell_{m} \in H$, we have that

$$
P\left(\ell_{1}, \ldots, \ell_{m}\right)=f\left(\ell_{1}, \ldots, \ell_{m}\right)
$$

and then output $\left\{P\left(z_{1}, \ldots, z_{m}\right)\right\}_{z_{1}, \ldots, z_{m} \in \mathbb{F}_{q}}$.
We need to prove two statements:
Exercise 2.1 There exists a polynomial P such that:

1. $\forall \ell_{1}, \ldots, \ell_{m} \in H, P\left(\ell_{1}, \ldots, \ell_{m}\right)=f\left(\ell_{1}, \ldots, \ell_{m}\right)$.
2. $\forall i, \operatorname{deg}_{x_{i}}(P) \leq h-1$.

Exercise 2.2 Such a polynomial P with properties defined in exercise 1 is unique.
Proof: (of exercise 1)
Define the function δ as:

$$
\delta\left(\ell_{1}, \ldots, \ell_{m}\right)=\prod_{i=1}^{m} \prod_{\ell_{i}^{\prime} \in H \backslash \ell_{i}}\left(\frac{x_{i}-\ell_{i}^{\prime}}{\ell_{i}-\ell_{i}^{\prime}}\right)
$$

As we indicated in previous lectures, it can be shown that the polynomial P is then nothing but:

$$
P\left(x_{1}, \ldots, x_{m}\right)=\sum_{\ell_{1}, \ldots, \ell_{m} \in H} f\left(\ell_{1}, \ldots, \ell_{m}\right) \delta\left(\ell_{1}, \ldots, \ell_{m}\right)
$$

We now prove the uniqueness of the polynomial P :
Proof: (of exercise 2)
Assume for contradiction that P_{1} and P_{2} are polynomials such that $\operatorname{deg}_{x_{i}}\left(P_{1}\right) \leq h-1, \operatorname{deg}_{x_{i}}\left(P_{2}\right) \leq$ $h-1$ and

$$
\forall \ell_{1}, \ldots, \ell_{m}, \quad P_{1}\left(\ell_{1}, \ldots, \ell_{m}\right)=P_{2}\left(\ell_{1}, \ldots, \ell_{m}\right)=f\left(\ell_{1}, \ldots, \ell_{m}\right)
$$

Let $P^{\prime}=P 1-P 2$. It is clear that

- For any $i, \operatorname{deg}_{x_{i}}\left(P^{\prime}\right) \leq h-1$.
- For all $\ell_{1}, \ldots, \ell_{m} \in H, P^{\prime}\left(\ell_{1}, \ldots, \ell_{m}\right)=0$.
P^{\prime} can be written as:

$$
\begin{aligned}
P^{\prime} & =\sum_{i_{1}, \ldots, i_{m} \leq h-1} c_{i_{1}, \ldots, i_{m}} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}} \\
& =\sum_{i \leq h-1} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{m}\right)
\end{aligned}
$$

This is a univariate polynomial in x_{1} that is zero for $\ell_{2}, \ldots, \ell_{m}$, i.e.

$$
\forall \ell_{2}, \ldots, \ell_{m}, \forall i \in\{0, \ldots, h-1\}, \quad Q_{i}\left(\ell_{2}, \ldots, \ell_{m}\right)=0
$$

The proof is completed by induction on the polynomials Q_{i} and so on.

Exercise 2.3 Show that Reed-Muller codes are linear.

2.1 Distance of Reed-Muller Codes

A codeword of the Reed-Muller code $C: \mathbb{F}_{q}^{h^{m}} \rightarrow \mathbb{F}_{q}^{q^{m}}$ is a polynomial P in variables z_{1}, \ldots, z_{m} evaluated on all points in \mathbb{F}_{q}^{m}. Thus, to compute the distance of the code, we are interested in lower
bounding the number of points on which two polynomials must differ. Thus, given two polynomials P_{1} and P_{2}, we are interested in a lower bound on the following probability:

$$
\mathbb{P}_{x_{1}, \ldots, x_{m}}\left[\left(P_{1}-P_{2}\right)\left(x_{1}, \ldots, x_{m}\right) \neq 0\right]
$$

The following result, known as the Schwartz-Zippel gives a lower bound on this probability. Note that the result is stated in terms of the total degree of the polynomial. For the polynomial, we will have that the total degree is at most $m \cdot(h-1)$, since the degree in each variable is at most $h-1$.

Lemma 2.4 (Schwartz-Zippel Lemma [1, 2]) Let $P \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{m}\right]$ be a polynomial with total degree r, then

$$
\underset{z_{1}, \ldots, z_{m}}{\mathbb{P}}\left[P\left(z_{1}, \ldots, z_{m}\right) \neq 0\right] \geq \frac{1}{q^{\left\lfloor\frac{r}{q-1}\right\rfloor}}\left(1-\frac{r \bmod (q-1)}{q}\right)
$$

Thus, we can say that the distance is at least q^{m} times the lower bound given by the above lemma. An interesting special case is when $q-1>r$ and we get that

$$
\underset{z_{1}, \ldots, z_{m}}{\mathbb{P}}\left[P\left(z_{1}, \ldots, z_{m}\right) \neq 0\right] \geq 1-\frac{r}{q}
$$

Thus, when $q-1>r$, we get that $\Delta(C) \geq q^{m} \cdot\left(1-\frac{r}{q}\right)$.
Exercise 2.5 For the special case, when $q-1>r$, prove the Schwartz-Zippel lemma by induction on the number of variables in P.

2.2 Local Correction of Reed-Muller codes

Let $\left\{P\left(z_{1}, \ldots, z_{m}\right)\right\}_{z_{1}, \ldots, z_{m} \in \mathbb{F}_{q}}$ be Reed-Muller codeword and assume that α fraction of the codeword is corrupted and instead we observe $\left\{g\left(z_{1}, \ldots, z_{m}\right)\right\}_{z_{1}, \ldots, z_{m} \in \mathbb{F}_{q}}$. Therefore, we have:

$$
\mathbb{P}_{z_{1}, \ldots, z_{m} \in \mathbb{F}_{q}}\left[P\left(z_{1}, \ldots, z_{m}\right)=g\left(z_{1}, \ldots, z_{m}\right)\right] \geq 1-\alpha
$$

Decoding the codeword would correspond to recovering the values $P\left(x_{1}, \ldots, x_{m}\right)$ for all $x_{1}, \ldots, x_{m} \in$ H. However, suppose we are only interested in the value at one point $\left(x_{1}, \ldots, x_{m}\right)$. Of course, decoding the full message would also give the value at the point of interest. However, the running time may be polynomial in q^{m} which is the length of the codeword.
Reed-Muller codes have the interesting property that for any point $\left(x_{1}, \ldots, x_{m}\right)$, we can recover the value $P\left(x_{1}, \ldots, x_{m}\right)$ (with high probability) in time poly (q, m). Note in particular that the dependence on m is polynomial instead of the exponential dependence we would get if we tried to recover the entire message. Also, we need to only to read the value of g at $O(q)$ randomly chosen points. Thus, we don't even read the entrire received word.
For simplicity, we illustrate this by an example.

Error Correction example:

Let $q \geq 5 h m$. Therefore, we know that the distance is at least $\frac{4}{5} q^{m}$. Assume that $\alpha=\frac{1}{10}$ fraction of the code is corrupted. Given $z=\left(z_{1}, \ldots, z_{m}\right)$ we want to find the value $P\left(z_{1}, \ldots, z_{m}\right)$. Pick
$y \in \mathbb{F}_{q}^{m}$ at random where $y=\left(y_{1}, \ldots, y_{m}\right)$ and define $\ell(t)=(1-t) z+t y$ where $t \in \mathbb{F}_{q}$. Note that $\ell(0)=z$.
Consider $P(\ell(t))=Q(t) . Q(t)$ is a univariate polynomial with degree at most $(h-1) m$. We want to find $Q(0)=P(z)$ by looking at $\{g(\ell(0)), g(\ell(1)), \ldots, g(\ell(q-1))\}$. If enough values are correct, this is Reed-Solomon code. Since at most $\frac{1}{10}$ of code words are corrupted, we have:

$$
\forall t \neq 0, \quad \underset{y}{\mathbb{P}}[g(\ell(t)) \neq P(\ell(t))] \leq \frac{1}{10}
$$

Therefore,

$$
\underset{y}{\mathbb{E}}\left[\left|\left\{t \in \mathbb{F}_{q} \mid g(\ell(t)) \neq P(\ell(t))\right\}\right|\right] \leq \frac{q}{10}
$$

By Markov's inequality, we can now bound the probability of having certain number of errors:

$$
\underset{y}{\mathbb{P}}\left[|\{t \mid g(\ell(t)) \neq P(\ell(t))\}| \geq \frac{2 q}{5}\right] \leq \frac{1}{4}
$$

Thus, with probability at least $3 / 4$, the univariate polynomial Q is uncorrupted in at least $3 q / 5$ values. We can find Q using Reed-Solomon (unique) decoding and output $Q(0)$.

References

[1] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701-717, October 1980.
[2] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the International Symposiumon on Symbolic and Algebraic Computation, EUROSAM '79, pages 216-226, London, UK, UK, 1979. Springer-Verlag.

