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1 A different definition of Reed-Solomon codes

Let C : Fk
q → Fn

q be a coding where q ≥ n. Fix a subset S ⊆ Fq such that |S| = n, i.e.
S = {a1, . . . , an}. For any m0, . . . ,mk−1, consider the following polynomial:

P (x) = m0 +m1x+m2x
2 + · · ·+mk−1x

k−1

We define the coding C as

C(m0, . . . ,mk−1) = (P (a1), P (a2), . . . , P (an))

Fix a subset H ⊆ Fq such that |H| = k. We treat the values of a polynomial P on H as the function
f : H → Fq. Let P be the unique degree k− 1 polynomial such that for all ` ∈ H, P (`) = f(`). We
want to output {P (a1), P (a2), . . . , P (an)}. This can be done by solving a set of k linear equation
of the form AX = b.

The problem with Reed-Solomon codes is that q should be large (q ≥ n). However, in practice
we can only transmit only bits or symbols over a small alphabet. Reed-Muller introduced below
help reduce the alphabet size to some extent. Moreover, they allow for a very interesting notion of
decoding which we call “local decoding”.

2 Reed-Muller codes

Fix H ⊆ Fq such that |H| = h. Let C : Fhm

q → Fqm
q be a coding where parameters q, h and m can

be defined to get a reasonable performance. Given a list of hm values in Fq as the input, we treat
them as a function f : Hm → Fq. We want to find the unique polynomial P ∈ Fq[x1, . . . , xm] such
that for all i, degxi

(P ) ≤ h− 1 and for all `1, . . . , `m ∈ H, we have that

P (`1, . . . , `m) = f(`1, . . . , `m)

and then output {P (z1, . . . , zm)}z1,...,zm∈Fq .

We need to prove two statements:

Exercise 2.1 There exists a polynomial P such that:

1. ∀`1, . . . , `m ∈ H,P (`1, . . . , `m) = f(`1, . . . , `m).

2. ∀i, degxi
(P ) ≤ h− 1.
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Exercise 2.2 Such a polynomial P with properties defined in exercise 1 is unique.

Proof: (of exercise 1)
Define the function δ as:

δ(`1, . . . , `m) =
m∏
i=1

∏
`′i∈H\`i

(
xi − `′i
`i − `′i

)
As we indicated in previous lectures, it can be shown that the polynomial P is then nothing but:

P (x1, . . . , xm) =
∑

`1,...,`m∈H
f(`1, . . . , `m)δ(`1, . . . , `m)

We now prove the uniqueness of the polynomial P :

Proof: (of exercise 2)
Assume for contradiction that P1 and P2 are polynomials such that degxi

(P1) ≤ h− 1, degxi
(P2) ≤

h− 1 and
∀`1, . . . , `m, P1(`1, . . . , `m) = P2(`1, . . . , `m) = f(`1, . . . , `m)

Let P ′ = P1− P2. It is clear that

• For any i, degxi
(P ′) ≤ h− 1.

• For all `1, . . . , `m ∈ H, P ′(`1, . . . , `m) = 0.

P ′ can be written as:

P ′ =
∑

i1,...,im≤h−1
ci1,...,imx

i1
1 . . . x

im
m

=
∑

i≤h−1
xi1Qi(x2, . . . , xm)

This is a univariate polynomial in x1 that is zero for `2, . . . , `m, i.e.

∀`2, . . . , `m, ∀i ∈ {0, . . . , h− 1}, Qi(`2, . . . , `m) = 0

The proof is completed by induction on the polynomials Qi and so on.

Exercise 2.3 Show that Reed-Muller codes are linear.

2.1 Distance of Reed-Muller Codes

A codeword of the Reed-Muller code C : Fhm

q → Fqm
q is a polynomial P in variables z1, . . . , zm

evaluated on all points in Fm
q . Thus, to compute the distance of the code, we are interested in lower
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bounding the number of points on which two polynomials must differ. Thus, given two polynomials
P1 and P2, we are interested in a lower bound on the following probability:

Px1,...,xm [(P1 − P2)(x1, . . . , xm) 6= 0]

The following result, known as the Schwartz-Zippel gives a lower bound on this probability. Note
that the result is stated in terms of the total degree of the polynomial. For the polynomial, we will
have that the total degree is at most m · (h− 1), since the degree in each variable is at most h− 1.

Lemma 2.4 (Schwartz-Zippel Lemma [1, 2]) Let P ∈ Fq[x1, . . . , xm] be a polynomial with to-
tal degree r, then

P
z1,...,zm

[P (z1, . . . , zm) 6= 0] ≥ 1

q
b r
q−1
c

(
1− r mod (q − 1)

q

)
Thus, we can say that the distance is at least qm times the lower bound given by the above lemma.
An interesting special case is when q − 1 > r and we get that

P
z1,...,zm

[P (z1, . . . , zm) 6= 0] ≥ 1− r

q
.

Thus, when q − 1 > r, we get that ∆(C) ≥ qm ·
(

1− r
q

)
.

Exercise 2.5 For the special case, when q − 1 > r, prove the Schwartz-Zippel lemma by induction
on the number of variables in P .

2.2 Local Correction of Reed-Muller codes

Let {P (z1, . . . , zm)}z1,...,zm∈Fq be Reed-Muller codeword and assume that α fraction of the codeword
is corrupted and instead we observe {g(z1, . . . , zm)}z1,...,zm∈Fq . Therefore, we have:

Pz1,...,zm∈Fq [P (z1, . . . , zm) = g(z1, . . . , zm)] ≥ 1− α

Decoding the codeword would correspond to recovering the values P (x1, . . . , xm) for all x1, . . . , xm ∈
H. However, suppose we are only interested in the value at one point (x1, . . . , xm). Of course,
decoding the full message would also give the value at the point of interest. However, the running
time may be polynomial in qm which is the length of the codeword.

Reed-Muller codes have the interesting property that for any point (x1, . . . , xm), we can recover
the value P (x1, . . . , xm) (with high probability) in time poly(q,m). Note in particular that the
dependence on m is polynomial instead of the exponential dependence we would get if we tried to
recover the entire message. Also, we need to only to read the value of g at O(q) randomly chosen
points. Thus, we don’t even read the entrire received word.

For simplicity, we illustrate this by an example.

Error Correction example:

Let q ≥ 5hm. Therefore, we know that the distance is at least 4
5q

m. Assume that α = 1
10 fraction

of the code is corrupted. Given z = (z1, . . . , zm) we want to find the value P (z1, . . . , zm). Pick
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y ∈ Fm
q at random where y = (y1, . . . , ym) and define `(t) = (1− t)z + ty where t ∈ Fq. Note that

`(0) = z.

Consider P (`(t)) = Q(t). Q(t) is a univariate polynomial with degree at most (h− 1)m. We want
to find Q(0) = P (z) by looking at {g(`(0)), g(`(1)), . . . , g(`(q − 1))}. If enough values are correct,
this is Reed-Solomon code. Since at most 1

10 of code words are corrupted, we have:

∀t 6= 0, P
y

[g(`(t)) 6= P (`(t))] ≤ 1

10

Therefore,

E
y

[|{t ∈ Fq | g(`(t)) 6= P (`(t))}|] ≤ q

10

By Markov’s inequality, we can now bound the probability of having certain number of errors:

P
y

[
|{t | g(`(t)) 6= P (`(t))}| ≥ 2q

5

]
≤ 1

4

Thus, with probability at least 3/4, the univariate polynomial Q is uncorrupted in at least 3q/5
values. We can find Q using Reed-Solomon (unique) decoding and output Q(0).
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