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In the last class we have defined entropy for random variables, talked about prefix free codes, and
also saw that we can always design a prefix free code whose expected length is the entropy plus one.
Although we defined entropy, we did not really use it except that trying to show that it captures
the notion of information in terms of the number of bits needed to communicate a message. The
notion starts to make more sense when we look at the joint entropies instead.

1 Joint Entropy

We have two random variables X and Y . The joint distribution of the two random variables (X,Y )
takes values (x, y) with probability p(x, y). Merely by using the definition, we can write down the
entropy of Z = (X,Y ) trivially. However what we are more interested in is seeing how the entropy
of (X,Y ), the joint entropy, relates to the individual entropies, which we work out below:

H(X,Y ) =
∑
x,y

p(x, y) log
1

p(x, y)

=
∑
x,y

p(x)p(y|x) log
1

p(x)
+
∑
x,y

p(x)p(y|x) log
1

p(y|x)

=
∑
x

p(x) log
1

p(x)

∑
y

p(y|x) +
∑
x,y

p(x)p(y|x) log
1

p(y|x)

= H(X) +
∑
x

p(x)H(Y |X = x)

= H(X) + E
x

[H(Y |X = x)]

Denoting Ex [H(Y |X = x)] as H(Y |X), this can simply be written as

H(X,Y ) = H(X) + H(Y |X) (1)

If we were to redo the calculations, we could similarly obtain:

H(X,Y ) = H(Y ) + H(X|Y ) (2)

This is called the Chain Rule for Entropy.

Example 1.1 Consider the random variable (X,Y ) with X∨Y = 1 and X ∈ {0, 1} and Y = {0, 1}
such that:

(X,Y ) =


01 with probability 1/3
10 with probability 1/3
11 with probability 1/3
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Now, let us calculate the following:

1. H(X) = H(Y ) = 1
3 log 3 + 2

3 log 3
2

2. H(Y |X = 0) = 0

3. H(Y |X = 1) = 1
2 log 1

1
2

+ 1
2 log 1

1
2

= 1

4. H(Y |X) = 1
3 · 0 + 2

3 · 1 = 2
3

5. H(X,Y ) = 1
3 log 3 + 1

3 log 3 + 1
3 log 3 = log 3

From the above we see that:
H(Y ) ≥ H(Y |X)

this is actually always true and we prove this fact below.

Fact 1.2 H(Y ) ≥ H(Y |X)

Proof: We want to show that H(Y |X)−H(Y ) ≤ 0. Consider the quantity on the left hand side.

H(Y |X)−H(Y ) =
∑
x

p(x)
∑
y

p(y|x) log
1

p(y|x)
−
∑
y

p(y) log
1

p(y)

=
∑
x

p(x)
∑
y

p(y|x) log
1

p(y|x)
−
∑
y

p(y) log
1

p(y)

∑
x

p(x|y)

=
∑
x,y

p(x, y)

(
log

1

p(y|x)
− log

1

p(y)

)

=
∑
x,y

p(x, y)

(
log

p(x)p(y)

p(x, y)

)

Now consider a random variable Z that takes value p(x)p(y)
p(x,y) with probability p(x, y). Then we can

use Jensen’s inequality to get:

∑
x,y

p(x, y)

(
log

p(x)p(y)

p(x, y)

)
≤ log

(∑
x,y

p(x)p(y)

p(x, y)
p(x, y)

)
= log(1) = 0 .

Note however the fact that conditioning on X reduces the entropy of Y is only true on average
over all fixings of X. In particular, in the above example we have H(Y |X = 1) = 1 > H(Y ). But
H(Y |X), which is an average over all fixings of X, is indeed smaller than H(Y ).

Exercise 1.3 Consider H(p) = p log 1
p +(1−p) log 1

1−p with 0 ≤ p ≤ 1. Prove that H(p) is concave
using H(X|Y ) ≤ H(Y ).
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Let us have a quick look at some of the things we proved and considered:

• Chain Rule: H(X,Y ) = H(X) +H(Y |X). Using induction it can easily be shown that the
following also holds:

H(X1, X2, . . . , Xm) = H(X1) + H(X2|X1) + H(X3|X1X2) . . . H(Xm|X1 . . . Xm−1)

• Conditioning on average reduces Entropy: H(Y ) ≥ H(Y |X).
These two points also imply that entropy is subadditive i.e.

H(X1, . . . Xm) ≤ H(X1) + · · ·+ H(Xm)

Using the above three facts, we can now start demonstrating some more interesting properties, but
before that we would return to source coding once again.

2 Source Coding Theorem

We begin by recalling the Shannon Code. We considered a random variable X that took on values
a1, a2, . . . , am with probabilities p1, p2, . . . , pm. We wanted to encode the values of X such that the
expected number of bits needed is small. If l1, l2, . . . , lm are the number of bits needed to encode
a1, a2, . . . , am, then we saw that a prefix free code exists iff:

n∑
i=1

2li ≤ 1

Furthermore, we saw that the expected length of the encoding is lower bounded by H(X) and
upper bounded by H(X) + 1 (a code as specified as above, the Shannon code may be constructed
by setting li = dlog 1

pi
e).

We will now try to improve this upper bound and we will do so by considering multiple copies of X.
The idea is that by amortizing the loss over many symbols, we can start to approach an expected
length equal to the lower bound i.e. the entropy.

The design may be done as follows: Consider m copies of the random variable X, {X1, . . . , Xm ∈ U}
and a code C : Um → {0, 1}∗. Let |U |m = N . Now, we know that:

H(X1, . . . , Xm) ≤
N∑
i=1

pidlog
1

pi
e ≤ H(X1, . . . , Xm) + 1 (3)

Let us also assume that the m copies of X are drawn i.i.d. Using this assumption we try to work
out the quantity H(X1, . . . , Xm). Which may be expanded using the chain rule as:

H(X1, . . . , Xm) = H(X1) + H(X2|X1) + · · ·+ H(Xm|X1, . . . , Xm−1)

= H(X1) + H(X2) + · · ·+ H(Xm)

= mH(X)
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Therefore, equation 3 becomes:

mH(X) ≤
N∑
i=1

pidlog
1

pi
e ≤ mH(X) + 1 (4)

Thus, we used H(X)+ 1
m bits on average per copy of X. This leads us to the source coding theorem.

Theorem 2.1 (Fundamental Source Coding Theorem (Shannon)) For all ε > 0 there ex-
ists a n0 such that for all n ≥ n0 and given n copies of X, X1, . . . , Xn sampled i.i.d., it is possible
to communicate (X1, . . . , xn) using at most H(X) + ε bits per copy on average.

3 Some Appplications

3.1 An Application in Counting

We want to prove that for k ≤ n/2:

k∑
i=1

(
n

i

)
≤ 2nH( k

n
)

Proof: Let F be the set of all subsets of [n] of size less than or equal to k. It is to be noted that
|F| =

∑
i≤k

(
n
i

)
. Let X be a member of F picked at random. We can think of X as the random

vector X1, . . . , Xn ∈ {0, 1}n such that
∑

Xi ≤ k. Also we assume that X1, . . . , Xn are uniformly
distributed on F . Now, let us try to compute:

H(X1, . . . , Xn) ≤ H(X1) + · · ·+ H(Xn)

= nH(X1)

log |F| ≤ nH(X1)

|F| ≤ 2nH(X1)

Now since X1 was an indicator variable, let us say that it takes value 1 with probability p and value
0 with probability 1 − p. Then H(X1) = H(p). We note that the funcion H(p) is increasing for
p ≤ 1/2 (prove it!) and hence H(X1) = H(p) ≤ H(k/n). Thus we will have:

|F| ≤ 2nH( k
n
)

3.2 A more interesting application

Consider a tripartite graph G = (V,E) with vertex partitions A, B and C. Also, let n1 be the
number of edges between vertices in A and vertices in B, let n2 be the number of edges between
the partitions B and C and n3 is the number of edges between A and C.
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The question that we are interested in: What is the maximum number of triangles such a graph
can have?

Clearly, if n is the number of triangles, then a trivial bound is n ≤ n1n2n3. We will now see that
this bound can be significantly improved by using entropy.

Let (X,Y, Z) be the vertices of a randomly chosen triangle. With X ∈ A, Y ∈ B, Z ∈ C. Note
that we are not choosing the vertices at random, but rather the triangles at random. Thus to be
be able to bound n, we would have to look at the joint entropy H(X,Y, Z).

log n = H(X,Y, Z) = H(X,Y ) + H(Z|X,Y ) (5)

= log n1 + H(Z|X,Y ) (6)

Similarly we also know that:

log n = H(X,Y, Z) = H(Y,Z) + H(X|Y,Z) (7)

= log n2 + H(X|Y,Z) (8)

Adding the two equations from above, we have:

2 log n = H(X,Y, Z) = log n1 + log n2 + H(X|Y,Z) + H(Z|X,Y )

2 log n ≤ log n1 + log n2 + H(Z) + H(X|Z)

2 log n ≤ log n1 + log n2 + H(X,Z)

2 log n ≤ log n1 + log n2 + log n3

log n2 ≤ log n1 + log n2 + log n3

n ≤
√
n1n2n3

Which is a much sharper bound as compared to the trivial bound discussed a bit earlier. In fact,
it is easy to check that this bound is attained by a complete tripartite graph.
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