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Lecture 3: Oct 7, 2014

Lecturer: Shi Li Scribe: Mrinalkanti Ghosh

In last lecture we have seen an use of entropy to give a tight upper bound in number of triangles in
an extremal graph in certain family. In this lecture we explore few more combinatorial applications
of entropy.

Before we get into the examples, let us recapitulate a few facts about entropy:

• H(Y |X) ≤ H(Y )

• H(X1X1 . . . Xn) = H(X1) +
∑n

i=2H(Xi|X1 . . . Xi−1) ≤
∑n

i=1H(Xi)

• H(X) ≤ log |U | where U is the range of discrete random variable X with equality when X is
distributed uniformly.

The problems we discuss in this lecture require us to count various structures in certain extremal
objects. In the first look, these problems seem unrelated to information theory or entropy. Never-
theless, we can use properties of entropy profitably to approach these problems.

Some of the problems discussed in this lecture also appears in [Jai01]. Interested readers are
rquested to refer to [Jai01] for details and for many other intersecting examples which are not
covered here.

1 Counting repetition in a square matrix

Claim 1.1 Let A be an n×n matrix such that each row and column has at most t distinct numbers.
There is a number x such that x appears in A at least n2/t2 times.

Proof: Let X,Y, Z be a triple of random variables where X ∼U [n], Y ∼U [n] and Z = AXY

( X and Y are independent ), i.e., we independently and uniformly randomly choose a row X, a
column Y and set Z to the (X,Y )-th element of the matrix.

Since each row has at most t distinct numbers, for all i ∈ [n], H(Z|X = i) ≤ log t and hence
H(Z|X) = Ei [H(Z|X = i)] ≤ log t. Similarly, H(Z|Y ) ≤ log t.

So we want to establish relationship among H(Z|X), H(Z|Y ) and H(Z).

To that end, we observe that Z is completely determined by X,Y and hence H(Z|XY ) = 0. Also,
X,Y are independent: H(XY ) = H(X) +H(Y ). Combining these two, we know that

H(XY Z) = H(XY ) +H(Z|XY ) = H(X) +H(Y ) .

Applying the chain rule in a different way and using the fact that conditioning reduces entropy, we
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get that

H(Z) = H(XY )−H(XY |Z)

= H(X) +H(Y )−H(X|Z)−H(Y |XZ)

≥ H(X) +H(Y )−H(X|Z)−H(Y |Z)

Finally, noticing that H(X)−H(X|Z) = H(Z)−H(Z|X) and H(Y )−H(Y |Z) = H(Z)−H(Z|Y )
gives that

H(Z) ≥ 2H(Z)−H(Z|X)−H(Z|Y ) ⇒ H(Z) ≤ H(Z|X) +H(Z|Y ) ≤ 2 log t .

Recall that H(Z) =
∑

z p(z) · log
(

1
p(z)

)
. Thus, from the above we get that on average log

(
1

p(z)

)
is at most 2 log t. Thus, there exists an element z∗ for which log

(
1

p(z∗)

)
≤ 2 log t. In particluar,

let z∗ be the element which occurs with the highest probability. Then log
(

1
p(z∗)

)
≤ log

(
1

p(z)

)
∀z,

which gives

log

(
1

p(z∗)

)
=
∑
z

p(z) · log

(
1

p(z∗)

)
≤
∑
z

p(z) · log

(
1

p(z)

)
≤ 2 log t .

Thus, we get that p(z∗) ≥ 1/t2 which means that z∗ occurs in at least n2/t2 times in the matrix.

Remark 1.2 The bound shown above is asymptotically tight: Consider a n × n matrix and a t
such that t | n. Divide the matrix in t2 squares with sides n/t. Index the squares by [1, t2]. Put the
number i in the i-th square. Clearly, the requirements for the matrix is satisfied and each number
appears n2/t2 times.

2 Shearer’s Lemma

We first start with an example similar to the one we saw in the last lecture. As we will see later,
the bound here is easily implied by Shearer’s lemma and the proof of Shearer’s lemma is essentially
a generalization of the proof here.

2.1 Areas under projection vs. Volume

Let S = {(xi, yi, zi) : i ∈ [n]} be a set of n (distinct) points in R3 and let Qxy, Qyz, Qxz be the
projections of S to XY, Y Z and XZ plains respectively. To be explicit: Qxy = {(xi, yi) : i ∈ [n]}
and so on. We want to show:

Claim 2.1 max {|Qxy| , |Qyz| , |Qxz|} ≥ n2/3

Proof: Let X,Y, Z be random variables defined as (X,Y, Z) ∼U S.

Clearly, H(XY Z) = log n. Now (X,Y ) ∈ Qxy and so H(XY ) ≤ log |Qxy|. Similarly, H(Y Z) ≤
log |Qyz| and H(XZ) ≤ log |Qxz|.
Now we use an inequality proved in last class:
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Fact 2.2 H(XY ) +H(Y Z) +H(XZ) ≥ 2H(XY Z)

We include a proof for the sake of completeness:

Proof:

H(XY ) +H(Y Z) +H(XZ) = H(Y ) +H(X|Y ) +H(Y Z) +H(XZ)
≥ H(Y |XZ) +H(X|Y Z) +H(Y Z) +H(XZ)
= 2H(XY Z)

So, log |Qxy|+ log |Qyz|+ log |Qxz| ≥ H(XY ) + H(Y Z) + H(XZ) ≥ 2H(XY Z) = 2 log n. Hence,
max {log |Qxy| , log |Qyz| , log |Qxz|} ≥ 2 log n/3, or equivalently, max {|Qxy| , |Qyz| , |Qxz|} ≥ n2/3

Remark 2.3 The bound shown above is asymptotically tight: Consider an axis-parallel solid cube
with side lengths m − 1 with one corner placed at the origin. Let S be the integral points of this
cube. Clearly, n = m3 and |Qxy| = |Qyz| = |Qxz| = m2 = n2/3.

2.2 Shearer’s Lemma

Consider the fact 2.2 and that the entropy is sub-additive. The fact that entropy is subadditive
gives that for three variables X,Y and Z

H(X) +H(Y ) +H(Z) ≥ H(XY Z) .

In the above example, we needed to bound H(XY )+H(Y Z)+H(ZX), where each term is not the
entropy of a single random variable, but the entropy of a subset of random variables. Since these
subsets cover each variable X,Y and Z twice, we got

H(XY ) +H(Y Z) +H(ZX) ≥ 2 ·H(XY Z) .

To state Shearer’s lemma, it is more convenient to think of the above in terms of distributions on
the subsets of the random variables. Formally, the statement is as follows

Lemma 2.4 (Shearer’s Lemma) Let X = {Xi : i ∈ [n]} be a set of random variables. For any
S ⊂ [n], let us denote XS = {Xi : i ∈ S}. Let D be an arbitrary distribution on 2[n] (set of all
subsets of [n]) and let µ be such that ∀i ∈ [n] PS∼D [i ∈ S] ≥ µ. Then

E
S∼D

[H(XS)] ≥ µ ·H(X) .

Before we see the proof, let us see how the lemma implies the previous examples. Let us think of
X1 = X, X2 = Y and X3 = Z. For subadditivity, we can consider D to be a uniform distribution
on the sets {1}, {2}, {3}. Then, a random set from D contains a given element i ∈ {1, 2, 3} with
probabiltiy 1/3 and the lemma gives

1

3
·H(X) +

1

3
·H(Y ) +

1

3
·H(Z) ≥ 1

3
·H(XY Z) .
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Similarly, taking D to be uniform over {1, 2}, {2, 3} and {3, 1} gives µ = 2/3 and hence

1

3
·H(XY ) +

1

3
·H(Y Z) +

1

3
·H(ZX) ≥ 2

3
·H(XY Z) .

We now proceed to the proof of the lemma.

Proof:

E
S∼D

[H(XS)] = E
S∼D

[∑
i∈S

H(Xi|XS∩[i−1])

]
by Chain rule

≥ E
S∼D

[∑
i∈S

H(Xi|X[i−1])

]
H(Xi|XA) ≥ H(Xi|XB) for A ⊂ B

= E
S∼D

∑
i∈[n]

1S (i)H(Xi|X[i−1])

 1s is indicator function for setS

=
∑
i∈[n]

P
S∼D

[i ∈ S]H(Xi|X[i−1])

≥ µ
∑
i∈[n]

H(Xi|X[i−1]) = µ ·H(X)

3 Number of graphs in a triangle-intersecting family

In this section we consider families of graphs on vertex set [n] for a fixed n.

Definition 3.1 A family G of graphs is called intersecting if ∀T,K ∈ G, T ∩K contains an edge.

Fact 3.2 For an intersecting family G with edges contained in a set E0 ⊆
(
[n]
2

)
, |G| ≤ 2|E0|/2.

Proof: For any graph G ∈ G, let Gc be a graph such that E(Gc) = E0 \ E(G). Now Gc 6∈ G,
because G ∩ Gc does not have any edge. Since there are 2|E0| possible graphs on [n] with edges
contained in E0, we have |G| ≤ 2|E0|/2.

Note that when E =
(
[n]
2

)
, we have any intersecting family G has at most 2(n2)/2 many graphs.

Definition 3.3 A family G of graphs is called 4-intersecting if ∀T,K ∈ G, T ∩K contains a 4.

Now we prove the main lemma of this section:

Lemma 3.4 If G is 4-intersecting then |G| ≤ 2(n2)/4.
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Proof: For any R ⊂ [n] let us define GR to be the disjoint union of a clique on R and a clique
on [n] \R. Formally, E(GR) = {{i, j} : i, j ∈ R or i, j ∈ [n] \R}.
Note that GR ∩ 4 must have one edge: since at least 2 vertices of a triangle is either in R or in
[n] \R together and the edge connecting them is in GR. Since G is a 4-intersecting, ∀T,K ∈ G, we
have GR ∩ T ∩K has at least one edge. Hence GR := {GR ∩ T : T ∈ G} is an intersecting family
with edges contained in E(GR).

Consider a collection of random variables X = {Xe : e ∈
(
[n]
2

)
} which is sampled as follows:

select a graph G uniformly and randomly form G and for each edge e set Xe = 1E(G) (e) i.e.,
Xe = 1 if e ∈ E(G) and 0 otherwise. Since there is a bijection mapping between a graph G and
the corresponding values of X, we have H(X) = log |G|. We will now apply Shearer’s lemma by
considering a distribution D over subsets of

(
[n]
2

)
.

We define the distribution D as follows: Pick a random R ⊂ [n] of size n/2 (say n is even) and take
the subset S = E(GR). As before, we define XS = {Xe | e ∈ S}. Also, by symmetry, for each

e ∈
(
[n]
2

)
, PS [e ∈ S] = |E(GR)|

(n2)
=

2(n/2
2 )

(n2)
= µ (say). Applying Shearer’s lemma gives

E
S∼D

[H(XS)] ≥ µ ·H(X) = µ · log |G| .

It remains to bound the LHS in the above expression. To do so, we note that for any R ⊂ [n]
and the corresponding S, a set of values for XS corresponds to a graph in GR. By the above
discussion, we know that GR is an intersecting family with edges contained in E(GR) and by Fact
3.2, |GR| ≤ 2|E(GR)|−1. This gives that H(XS) ≤ |E(GR)| − 1 = 2

(
n/2
2

)
− 1. Combining this with

the bound from Shearer’s lemma gives

log |G| ≤ 1

µ
·
(

2

(
n/2

2

)
− 1

)
=

(
n
2

)
2
(
n/2
2

) · (2

(
n/2

2

)
− 1

)
=

(
n

2

)
− n− 1

n/2− 1
≤
(
n

2

)
− 2 ,

and hence |G| ≤ 2(n2)/4

Remark 3.5 There exists a 4-intersecting family G with |G| ≥ 2(n2)/8: we fix a triangle and take
any subset of remaining

(
n
2

)
− 3 edges to form a 4-intersecting family.

Open Problem 3.6 There is a gap between the upper and lower bound of the size of a 4-
intersecting family. Are those bounds tight? Can the gap be improved?
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