Information and Coding Theory

Autumn 2014

Lecture 4: October 9, 2014
Lecturer: Madhur Tulsiani
Scribe: Hai Wang

1 Mutual Information

The mutual information between two random variables X and Y is defined by the formula

$$
\begin{equation*}
I(X ; Y)=H(X)-H(X \mid Y) \tag{1}
\end{equation*}
$$

where $H()$ denotes the entropy. Mutual information measures how much information in the X about Y (vice versa), and mutual information is not symmetric. Using the Chain Rule for entropy $H(X, Y)=H(X)+H(Y \mid X)$, we have:

$$
\begin{equation*}
I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)=H(X)+H(Y)-H(X, Y) \tag{2}
\end{equation*}
$$

Example 1.1 Consider the random variable (X, Y) with $X \vee Y=1, X \in\{0,1\}$ and $Y \in\{0,1\}$ such that:

$$
(X, Y)=\left\{\begin{array}{lll}
10 & w \cdot p & 1 / 3 \\
01 & w \cdot p & 1 / 3 \\
11 & w \cdot p & 1 / 3
\end{array}\right.
$$

Then, we can calculate the entropy as following:

$$
\begin{array}{r}
H(X)=\frac{2}{3} \log \frac{3}{2}+\frac{1}{3} \log 3 \\
H(Y)=\frac{1}{3} \log 3+\frac{2}{3} \log \frac{3}{2} \\
H(X, Y)=3 \times \frac{1}{3} \log 3=\log 3 \\
I(X ; Y)=H(X)+H(Y)-H(X, Y)=\log 3-\frac{4}{3} \log 2 \tag{6}
\end{array}
$$

Let's consider the mutual information $I(X ; Y \mid Z)$ which can be defined as:
$I(X ; Y \mid Z)=\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)]=H(X \mid Z)-H(X \mid Y, Z)=\mathbb{E}_{Z}[H(X \mid Z=z)-H(X \mid Y, Z=z)]$

We know that in entropy, we have $H(X \mid Y) \leq H(X)$, then in mutual information, can we have the similar conclusion that $I(X ; Y \mid Z) \leq I(X ; Y)$? The answer is no, let's take a look at the following example

Example 1.2 Consider the random variable $(X, Y, Z), X \in\{0,1\}, Y \in\{0,1\}$ and $Z=X \oplus Y$ such that:

$$
(X, Y, Z)= \begin{cases}000 & \text { w.p } 1 / 4 \\ 011 & \text { w.p } 1 / 4 \\ 101 & \text { w.p } 1 / 4 \\ 110 & \text { w.p } 1 / 4\end{cases}
$$

We know in this case, X, Y are independent and thus $I(X ; Y)=0$, but

$$
\begin{array}{r}
I(X: Y \mid Z)=\mathbb{E}_{Z}[I(X|Z=z ; Y| Z=z)] \\
=\frac{1}{2} I(X|Z=0 ; Y| Z=0)+\frac{1}{2} I(X|Z=1 ; Y| Z=1) \\
=\frac{1}{2} \log 2+\frac{1}{2} \log 2=\log 2
\end{array}
$$

Recall that in entropy, we have the following chain rule:

$$
\begin{equation*}
H\left(X_{1}, \ldots, X_{n}\right)=H\left(X_{1}\right)+H\left(X_{2} \mid X_{1}\right)+H\left(X_{3} \mid X_{1}, X_{2}\right)+\ldots+H\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \tag{8}
\end{equation*}
$$

Similarly, in mutual information, we have:
Lemma 1.3 $I\left(\left(X_{1}, \ldots, X_{n}\right) ; Y\right)=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)$

Proof:

$$
\begin{array}{r}
I\left(\left(X_{1}, \ldots, X_{n}\right) ; Y\right)=H\left(X_{1}, \ldots, X_{n}\right)-H\left(X_{1}, \ldots, X_{n} \mid Y\right) \\
=\sum_{i=1}^{n} H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-\sum_{i=1}^{n} H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right) \\
=\sum_{i=1}^{n}\left(H\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)-H\left(X_{i} \mid Y, X_{1}, \ldots, X_{i-1}\right)\right) \\
=\sum_{i=1}^{n} I\left(X_{i} ; Y \mid X_{1}, \ldots, X_{i-1}\right)
\end{array}
$$

Lemma 1.4 (Special case of data processing inequality) Let g be a function of Y, then

$$
I(X ; Y) \geq I(X ; g(Y))
$$

Proof: we first know that $H(X \mid Y, g(Y))=H(X \mid Y)$, since $g(Y)$ is totally determined by Y, then

$$
\begin{equation*}
I(X ; Y)=H(X)-H(X \mid Y)=H(X)-H(X \mid Y, g(Y)) \geq H(X)-H(X \mid g(Y))=I(X ; g(Y)) \tag{9}
\end{equation*}
$$

Definition 1.5 Suppose $I(X ; Y)=I(X ; g(Y))$, then $g(Y)$ is called sufficient statistic to X.

Example 1.6

$$
X=\left\{\begin{array}{lll}
\frac{1}{2} & \text { w.p } & 1 / 2 \\
\frac{1}{3} & \text { w.p } & 1 / 2
\end{array}\right.
$$

Let Y be a sequence of n tosses of a coin with probability of heads given by X. Let $g(Y)$ be the number of heads in Y.

Exercise 1.7 Prove $I(X ; Y)=I(X ; g(Y))$ in the above example.

2 KL-divergence

Let P and Q be two distributions on a universe U, then the KL-divergence between P and Q can be defined as:

$$
\begin{equation*}
D(P \| Q)=\sum_{x \in U} P(x) \log \frac{P(x)}{Q(x)} \tag{10}
\end{equation*}
$$

It's easy to check that $D(P \| Q)$ and $D(Q \| P)$ are not equal.
Example 2.1 Suppose $U=\{a, b, c\}$, and $P(a)=\frac{1}{3}, P(b)=\frac{1}{3}, P(c)=\frac{1}{3}$ and $Q(a)=\frac{1}{2}, Q(b)=\frac{1}{2}$, $Q(c)=0$. Then

$$
\begin{aligned}
& D(P \| Q)=\frac{2}{3} \log \frac{2}{3}+\infty=\infty \\
& D(Q \| P)=\log \frac{3}{2}+0=\log \frac{3}{2}
\end{aligned}
$$

Even though the KL-divergence is not symmteric, it is often used as a measure of "dissimilarity" between two distribution. Towards this, we first prove that it is non-negative and is 0 if and only if $P=Q$.

Lemma 2.2 Let P and Q be distributions on a finite universe U. Then $D(P \| Q) \geq 0$ with equality if and only if $P=Q$.

Proof: Let $\operatorname{Supp}(P)=\{x: P(x)>0\}$. Then, we must have $\operatorname{Supp}(P) \subseteq \operatorname{Supp}(Q)$ if $D(P, Q)<\infty$. We can then assume without loss of generality that $\operatorname{Supp}(Q)=U$. Using the fact the log is a concave function, with Jensen inequality, we have:

$$
\begin{aligned}
D(P \| Q)=\sum_{x \in U} P(x) \log \frac{P(x)}{Q(x)} & =\sum_{x \in \operatorname{Supp}(P)} P(x) \log \frac{P(x)}{Q(x)} \\
& =-\sum_{x \in \operatorname{Supp}(P)} P(x) \log \frac{Q(x)}{P(x)} \\
& \geq-\log \left(\sum_{x \in \operatorname{Supp}(P)} P(x) \cdot \frac{Q(x)}{P(x)}\right) \\
& =-\log \left(\sum_{x \in \operatorname{Supp}(P)} Q(x)\right) \\
& \geq-\log 1=0 .
\end{aligned}
$$

For the case when $D(P \| Q)=0$, we note that this implies $P(x)=Q(x) \forall x \in \operatorname{Supp}(P)$, which in turn gives that $P(x)=Q(x) \forall x \in U$.

We note that KL-divergence also has an interesting interpretation in terms of source coding. Writing

$$
D(P \| Q)=\sum P(x) \log \frac{P(x)}{Q(x)}=\sum P(x) \log \frac{1}{Q(x)}-\sum P(x) \log \frac{1}{P(x)}
$$

we can view this as the number of extra bits we use (on average) if we designed a code accoriding to the distribution P, but used it to communicate outcomes of a random variable X distributed according to Q.
We now relate KL-divergence to some other notions of distance between two probability distributions.

Definition 2.3 Let P and Q be two distributions on a finite universe U. Then the total-variation distance between P and Q is defined as

$$
\delta_{T V}(P, Q)=\frac{1}{2} \cdot\|P-Q\|_{1}=\frac{1}{2} \cdot \sum_{x \in U}|P(x)-Q(x)|
$$

The quantity $\|P-Q\|_{1}$ is referred to as the ℓ_{1}-distance between P and Q.

In many applications, we want to actually bound the ℓ_{1}-distance between P and Q but it's easier to analyze the KL-divergence. The following inequality helps relate the two.

Lemma 2.4 (Pinsker's inequality) Let P and Q be two distributions defined on a universe U. Then

$$
D(P \| Q) \geq \frac{1}{2 \ln 2} \cdot\|P-Q\|_{1}^{2}
$$

We will see the proof of this in the next lecture.

