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1 Mutual Information

The mutual information between two random variables X and Y is defined by the formula
I(X;Y) = H(X) — H(X|Y) 1)

where H() denotes the entropy. Mutual information measures how much information in the X
about Y (vice versa), and mutual information is not symmetric. Using the Chain Rule for entropy
H(X,Y)=H(X)+ H(Y|X), we have:

I(X;Y)=HX)-HX|Y)=HY)-HY|X)=H(X)+H(Y) - HX,Y) (2)

Example 1.1 Consider the random variable (X,Y) with X VY =1, X € {0,1} and Y € {0,1}
such that:

10 w.p 1/8
(X,Y)=< 01 wpl1/3
11 wp 1/3
Then, we can calculate the entropy as following:
2 3 1
HX)==-log=+ =1
(X)= 21ogy + 1 log3 3)
1 2 3
HY)=-1 —log = 4
(V) = S log3 + - log 5 (®)
1
H(X,Y):3><§log3:log3 (5)
4
I(X;Y)zH(X)—l—H(Y)—H(X,Y):10g3—§10g2 (6)

Let’s consider the mutual information I(X;Y|Z) which can be defined as:

I(X;Y12) = BA[I(X|Z = 2 Y|Z = 2)] = H(X|Z)~H(X|Y, 7) = B4 [H(X|Z = 2)~H(X|Y, Z = =)

(7)
We know that in entropy, we have H(X|Y) < H(X), then in mutual information, can we have the
similar conclusion that I(X;Y|Z) < I(X;Y) ? The answer is no, let’s take a look at the following
example



Example 1.2 Consider the random variable (X,Y,Z), X € {0,1}, Y € {0,1} and Z = X @Y

such that:
000 w.p 1/4

) 011 w.p 1/4
(X.Y,2) = 101 w.p 1/4
110 w.p 1/4

We know in this case, X,Y are independent and thus I1(X;Y) =0, but
I(X:Y|2)=Ez[I(X|Z =2%Y|Z = 2)]

1 1
= §I(X|Z =0;Y|Z=0)+ §I(X|Z =1LY|Z=1)

——711 2+711 2 =1log2
o} 0 0
5 g 5 g g

Recall that in entropy, we have the following chain rule:

H(Xy,...,X,) =H(X1)+ H(X2|X1) + H(X3| X1, X2) + ...+ HXp| X1, .., Xno1) (8)
Similarly, in mutual information, we have:
Lemma 1.3 I((X1,...,X,);Y)=> ", [(X;;Y|X1,...,Xi1)

Proof:
(X1, Xo):Y) = H(X1, .o, Xn) — H(X1, ..., Xa]Y)
n n
= ZH(Xi\Xl, o X)) — ZH(Xz'\Y, X1, Xi1)
=1

=1
= (H(Xi|Xy,...,Xi1) - HX|Y, X1,..., Xi 1))
=1

= ZI(XiEY‘Xla-“aXifl)
i—1

Lemma 1.4 (Special case of data processing inequality) Let g be a function of Y, then

I(X;Y) > 1(X;9(Y)).

Proof: we first know that H(X|Y,g(Y)) = H(X|Y), since ¢g(Y') is totally determined by Y, then
I(X;Y) = H(X) - HX|Y) = H(X) - H(X|Y,g(Y)) = H(X) - H(X|g(Y)) = [(X;9(Y)) (9)

Definition 1.5 Suppose I[(X;Y) = I(X;g(Y)), then g(Y) is called sufficient statistic to X.



Example 1.6
B w.p 1/2
X = { w.p 1/2
Let Y be a sequence of n tosses of a coin with probability of heads given by X. Let g(Y) be the
number of heads in'Y .

WI—N|—

Exercise 1.7 Prove [(X;Y) = I(X;g(Y)) in the above example.

2 KL-divergence

Let P and @ be two distributions on a universe U, then the KL-divergence between P and () can
be defined as:

P(z)
D(P
(PllQ)=>_ P(x o) (10)
zelU
It’s easy to check that D(P||Q) and D(Q||P) are not equal.
Example 2.1 Suppose U = {a,b,c}, and P(a) = %, P(b) = é, P(c) = % and Q(a) = %, Q) = %,
Q(c) =0. Then

2
D(P||Q) = 710g3 + 00 =00.

3 3
D(Q||P) = logi +0= logi.

Even though the KL-divergence is not symmteric, it is often used as a measure of “dissimilarity”
between two distribution. Towards this, we first prove that it is non-negative and is 0 if and only
if P=Q.

Lemma 2.2 Let P and Q be distributions on a finite universe U. Then D(P||Q) > 0 with equality
if and only if P = Q).

Proof: Let Supp(P) = {z: P(x) > 0}. Then, we must have Supp(P) C Supp(Q) if D(P, Q) < oc.
We can then assume without loss of generality that Supp(Q) = U. Using the fact the log is a concave
function, with Jensen inequality, we have:

DPIQ) =Y P@)loz o) = 3 P(a)log L1

zelU IB) z€Supp(P) Q(:L’

)
=— Z P(x) loggg)

zeSupp(P)




For the case when D(P||Q) = 0, we note that this implies P(x) = Q(z) Y& € Supp(P), which in
turn gives that P(z) = Q(z) Vx € U. ]

We note that KL-divergence also has an interesting interpretation in terms of source coding. Writing

P(z) 1 o L
Q) 0w~ 2= FE@loe By

we can view this as the number of extra bits we use (on average) if we designed a code accoriding
to the distribution P, but used it to communicate outcomes of a random variable X distributed
according to Q.

D(P||Q) = > P(z)log

= Z P(zx)log

We now relate KL-divergence to some other notions of distance between two probability distribu-
tions.

Definition 2.3 Let P and Q be two distributions on a finite universe U. Then the total-variation
distance between P and Q is defined as

Srv(P.Q) = 5 IP=Ql = 53 IP@) - Q).

zeU

The quantity |P — Q||; is referred to as the {;-distance between P and Q).

In many applications, we want to actually bound the ¢;-distance between P and @Q but it’s easier
to analyze the KL-divergence. The following inequality helps relate the two.

Lemma 2.4 (Pinsker’s inequality) Let P and Q be two distributions defined on a universe U.

Then 1
> _— . |P-Q|?.
D(PIQ) > 575 IIP - Q3

We will see the proof of this in the next lecture.



