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1 Mutual Information

The mutual information between two random variables X and Y is defined by the formula

I(X;Y ) = H(X)−H(X|Y ) (1)

where H() denotes the entropy. Mutual information measures how much information in the X
about Y (vice versa), and mutual information is not symmetric. Using the Chain Rule for entropy
H(X,Y ) = H(X) +H(Y |X), we have:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ) (2)

Example 1.1 Consider the random variable (X,Y ) with X ∨ Y = 1, X ∈ {0, 1} and Y ∈ {0, 1}
such that:

(X,Y ) =


10 w.p 1/3
01 w.p 1/3
11 w.p 1/3

Then, we can calculate the entropy as following:

H(X) =
2

3
log

3

2
+

1

3
log 3 (3)

H(Y ) =
1

3
log 3 +

2

3
log

3

2
(4)

H(X,Y ) = 3× 1

3
log 3 = log 3 (5)

I(X;Y ) = H(X) +H(Y )−H(X,Y ) = log 3− 4

3
log 2 (6)

Let’s consider the mutual information I(X;Y |Z) which can be defined as:

I(X;Y |Z) = EZ [I(X|Z = z;Y |Z = z)] = H(X|Z)−H(X|Y,Z) = EZ [H(X|Z = z)−H(X|Y,Z = z)]
(7)

We know that in entropy, we have H(X|Y ) ≤ H(X), then in mutual information, can we have the
similar conclusion that I(X;Y |Z) ≤ I(X;Y ) ? The answer is no, let’s take a look at the following
example
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Example 1.2 Consider the random variable (X,Y, Z), X ∈ {0, 1}, Y ∈ {0, 1} and Z = X ⊕ Y
such that:

(X,Y, Z) =


000 w.p 1/4
011 w.p 1/4
101 w.p 1/4
110 w.p 1/4

We know in this case, X,Y are independent and thus I(X;Y ) = 0, but

I(X : Y |Z) = EZ [I(X|Z = z;Y |Z = z)]

=
1

2
I(X|Z = 0;Y |Z = 0) +

1

2
I(X|Z = 1;Y |Z = 1)

=
1

2
log 2 +

1

2
log 2 = log 2

Recall that in entropy, we have the following chain rule:

H(X1, . . . , Xn) = H(X1) +H(X2|X1) +H(X3|X1, X2) + . . .+H(Xn|X1, . . . , Xn−1) (8)

Similarly, in mutual information, we have:

Lemma 1.3 I((X1, . . . , Xn);Y ) =
∑n

i=1 I(Xi;Y |X1, . . . , Xi−1)

Proof:

I((X1, . . . , Xn);Y ) = H(X1, . . . , Xn)−H(X1, . . . , Xn|Y )

=

n∑
i=1

H(Xi|X1, . . . , Xi−1)−
n∑

i=1

H(Xi|Y,X1, . . . , Xi−1)

=

n∑
i=1

(H(Xi|X1, . . . , Xi−1)−H(Xi|Y,X1, . . . , Xi−1))

=

n∑
i=1

I(Xi;Y |X1, . . . , Xi−1)

Lemma 1.4 (Special case of data processing inequality) Let g be a function of Y , then

I(X;Y ) ≥ I(X; g(Y )) .

Proof: we first know that H(X|Y, g(Y )) = H(X|Y ), since g(Y ) is totally determined by Y , then

I(X;Y ) = H(X)−H(X|Y ) = H(X)−H(X|Y, g(Y )) ≥ H(X)−H(X|g(Y )) = I(X; g(Y )) (9)

Definition 1.5 Suppose I(X;Y ) = I(X; g(Y )), then g(Y ) is called sufficient statistic to X.
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Example 1.6

X =

{
1
2 w.p 1/2
1
3 w.p 1/2

Let Y be a sequence of n tosses of a coin with probability of heads given by X. Let g(Y ) be the
number of heads in Y .

Exercise 1.7 Prove I(X;Y ) = I(X; g(Y )) in the above example.

2 KL-divergence

Let P and Q be two distributions on a universe U , then the KL-divergence between P and Q can
be defined as:

D(P ||Q) =
∑
x∈U

P (x) log
P (x)

Q(x)
(10)

It’s easy to check that D(P ||Q) and D(Q||P ) are not equal.

Example 2.1 Suppose U = {a, b, c}, and P (a) = 1
3 , P (b) = 1

3 , P (c) = 1
3 and Q(a) = 1

2 , Q(b) = 1
2 ,

Q(c) = 0. Then

D(P ||Q) =
2

3
log

2

3
+∞ =∞ .

D(Q||P ) = log
3

2
+ 0 = log

3

2
.

Even though the KL-divergence is not symmteric, it is often used as a measure of “dissimilarity”
between two distribution. Towards this, we first prove that it is non-negative and is 0 if and only
if P = Q.

Lemma 2.2 Let P and Q be distributions on a finite universe U . Then D(P ||Q) ≥ 0 with equality
if and only if P = Q.

Proof: Let Supp(P ) = {x : P (x) > 0}. Then, we must have Supp(P ) ⊆ Supp(Q) if D(P,Q) <∞.
We can then assume without loss of generality that Supp(Q) = U . Using the fact the log is a concave
function, with Jensen inequality, we have:

D(P ||Q) =
∑
x∈U

P (x) log
P (x)

Q(x)
=

∑
x∈Supp(P )

P (x) log
P (x)

Q(x)

= −
∑

x∈Supp(P )

P (x) log
Q(x)

P (x)

≥ − log

 ∑
x∈Supp(P )

P (x) · Q(x)

P (x)


= − log

 ∑
x∈Supp(P )

Q(x)


≥ − log 1 = 0 .
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For the case when D(P ||Q) = 0, we note that this implies P (x) = Q(x) ∀x ∈ Supp(P ), which in
turn gives that P (x) = Q(x) ∀x ∈ U .

We note that KL-divergence also has an interesting interpretation in terms of source coding. Writing

D(P ||Q) =
∑

P (x) log
P (x)

Q(x)
=
∑

P (x) log
1

Q(x)
−
∑

P (x) log
1

P (x)
,

we can view this as the number of extra bits we use (on average) if we designed a code accoriding
to the distribution P , but used it to communicate outcomes of a random variable X distributed
according to Q.

We now relate KL-divergence to some other notions of distance between two probability distribu-
tions.

Definition 2.3 Let P and Q be two distributions on a finite universe U . Then the total-variation
distance between P and Q is defined as

δTV (P,Q) =
1

2
· ‖P −Q‖1 =

1

2
·
∑
x∈U
|P (x)−Q(x)| .

The quantity ‖P −Q‖1 is referred to as the `1-distance between P and Q.

In many applications, we want to actually bound the `1-distance between P and Q but it’s easier
to analyze the KL-divergence. The following inequality helps relate the two.

Lemma 2.4 (Pinsker’s inequality) Let P and Q be two distributions defined on a universe U .
Then

D(P ||Q) ≥ 1

2 ln 2
· ‖P −Q‖21 .

We will see the proof of this in the next lecture.
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