
Information and Coding Theory Autumn 2014

Lecture 6: October 16, 2014

Lecturer: Madhur Tulsiani Scribe: Takeshi Onishi

In this lecture, we will use KL-divergence to prove a lower bound for the multi-armed bandit
problem. Recall that in the multi-armed bandit problem pronlem, we have N possible actions. At
time t, each action i has a loss lt(i) ∈ {0, 1}. However, we only get to see the loss of the action
of the action we decide to take at time t (like the traffic on the road that we choose to take). If
a1, . . . , aT ∈ [N] describe our actions for times 1, . . . , T , out goal is to minimize the loss of our
actions as compared to the best single action. We define the regret as

RT =
T∑
t=1

lt(at)− min
i∈[N]

T∑
t=1

lt(i) .

We will use the lower bound on distinguishing coin tosses to give a distribution over losses such
that the regret for any action sequence is high in expectation. In particular, we will consider losses
when we hide a biased coin in the ith position such that lt(i) = 1 with probability 1/2 − ε and 0
with probabiliy 1/2+ε. All other losses will be 0/1 with probability 1/2 each. We will also chooses
i ∈ [N] at random. We will use this to show that

RT = Ω
(√

NT
)
.

This bound is almost tight since there exists a randomized algorithm which achieves an expected
regret O

(√
N logN · T

)
.

First we develop a generalization of the lower bound in the previous class for disinguishing coins,
to the setting where we have N instead of 2 coins. We follow the exposition by Kleinberg [K07] for
this lecture.

1 Tossing N coins

We define a generalization of the problem of distinguishing two coins discussed in the previous
lecture. Consider a scenario where we have N coins, N − 1 of which are fair coins which are heads
and tails with probability 1/2 each, and one coin is biased and comes up heads with probability
1/2 − ε. Moreover, the biased coin is hidden in one of the N positions at random. We will prove
a lower bound on the number of coin tosses any algorithm needs to observe to guess the position
of the biased with significant probability. Note that for N = 2, this is equivalent to the problem
discussed in the previous lecture.

We consider a guessing algorithm, which at time t outputs a pair (at, bt) ∈ [N]2. Here, bt ∈ N is
the algorithm’s current guess for the position of the biased coin. Also, the algorithm gets to see
the output of the toss for the coin in position at at time t. We can think of this as a model where
we toss all N coins at time t, but algorithm can ask to see the output of only one coin (which it
asks for by specifying at).

1

Let P1, . . . , PN denote the distributions for the view of the algorithm from time 1 to T , when the
biased coin is hidden in the ith position. Note that what the algorithm sees from time 1 to T is
a seuqnce of T 0/1 values (say 0 for “tails” and 1 for “heads”). However, the distribution can be
fairly complicated. In particular, which coin the algorithm asks to see at time t can depend on
what it saw at times 1, . . . , t − 1, which can in turn depend on the position of the biased coin.
Nevertheless, the distribution is determined completely by the description of the algorithm and the
position of the biased coin.

We will prove the following lemma which shows that for every algorithm A, there are at least N/3
places to hide the biased coin, such that algorithm fails to find it with probability at least 1/2,
after T ≤ N/(100ε2) steps.

Lemma 1.1 Let A be any guessing algorithm operating as specified above and let T ≤ N
60·ε2 for

ε ≤ 1/4 and N ≥ 14. Then, there exists J ⊆ [N] with |J | ≥ N/3 such that

∀j ∈ J, P
Dj

[bT+1 = j] ≤ 1

2

Note that it is necessary, J depends on the algorithm. In particular, if the algorithm guesses
the position of the biased coin to be 1 irrespective of what it sees, then the set J certainly cannot
contain 1. In the proof below, we shall find J simply by eliminating all positions which the algorithm
guesses with atypically high probability or which the algorithm queries too many times.

Proof: Define Ni to be the number of times the algorithm asks to see the output of the ith coin

Ni := |{t ∈ [T] | at = i}| .

Also, let D0 be the hypothetical distribution for the view of the algorithm when all the N coins are
fair. This is simply the distribution for a sequence of T independent and uniform 0/1 values. We
shall define the set J by considering the behavior of the algorithm if tosses it saw were according
to the distribution D0. We define

J1 :=

{
i | E

D0

[Ni] ≤
3T

N

}
, J2 :=

{
i | P

D0

[bT+1 = i] ≤ 3

N

}
and J = J1 ∩ J2 .

Since
∑

i ED0 [Ni] = T and
∑

i PD0 [bT+1 = i] = 1, an averaging argument gives |J1| ≥ 2N/3 and
|J2| ≥ 2N/3, and hence |J | ≥ N/3.

Consider any j ∈ J and a function f on the view of the algorithm for times 1, . . . , T , which is 1 if
bT+1 = j and 0 otherwise. Then, we have that∣∣∣∣ PDj

[bT+1 = j]− P
D0

[bT+1 = j]

∣∣∣∣ =

∣∣∣∣EDj

[f]− E
D0

[f]

∣∣∣∣ ≤ 1

2
· ‖D0 −Dj‖1 .

Combining this with Pinsker’s inequality, we have

P
Dj

[bT+1 = j] ≤ 3

N
+

1

2
·
√

2 ln 2 ·KL (D0||Dj) ,

where we use the notation KL(D0||Dj) instead of D(D0||Dj) to denote KL-divergence to avoid
confusion.

2

Let x1, . . . , xT be the outputs of the coin tosses seen by the algorithm A. Using the chain rule, we
can write the KL-divergence as

KL(D0||Dj) =

T∑
t=1

∑
x1,...,xt−1

P
D0

[x1, ..., xt] ·KL (D0(xt)||Dj(xt) | x1, ..., xt−1)

where D0(xt) and Dj(xt) denote the distribution of the tth coin toss seen by the algorithm (given
the outputs of the first t − 1 tosses). Note that this is a single coin toss which is according to a
biased coin in the distribution D|j if at = j and is according to a fair coin if at 6= j. On the other
hand, this toss is always according to a fair coin in the distribution D0. Let B = KL(P ||Q) where
P is the distribution which 0/1 with probability 1/2 each and Q is 1 with probability 1/2− ε and
0 with probability 1/2 + ε. Then we can write

KL(D0||Dj) =
T∑
t=1

∑
x1,...,xt−1

P
D0

[x1, ..., xt] · 1{at=j} ·B = E
D0

[Nj] ·B ≤ 3T

N
·B .

Using a calculation similar to the one in the previous lecture, we get that B ≤ 5ε2

2 ln 2 for ε ≤ 1/4.
Combining this with the above bounds gives

P
Dj

[bT+1 = j] ≤ 3

N
+

1

2
·
√

2 ln 2 · 3T

N
· 5ε2

2 ln 2
≤ 3

N
+

1

2
·
√

15T

ε2N
≤ 3

N
+

1

4
,

since T ≤ N
60ε2

. For N ≥ 12, the above bound is at most 1/2 which proves the lemma.

2 The regret bound

Using the generalization of coin tossing in the previous section, it is now easy to derive the lower
bound for multi-armed bandits. For any fixed algorithm A, we will give a distribution over losses

such that the expected regret of the algorithm is Ω
(√

NT
)

.

We define the distribution by chosing a random i∗ ∈ [N] and defining the losses lt(i) as

lt(i) =

{
1 w.p. 1/2
0 w.p. 1/2

if i 6= i∗ and lt(i) =

{
1 w.p. 1/2− ε
0 w.p. 1/2 + ε

if i = i∗

We choose ε =
√

60T/N and think of an algorithm which chooses action at ∈ [N] at time t as a
coin-guessing algorithm which outputs the pair (at, at) at time t. Since T ≤ N

60ε2
, ∀t ∈ {0, . . . , T−1},

there exists a set Jt ⊆ [N] with |Jt| ≥ N/3 such that

∀j ∈ Jt, P
Dj

[at+1 = j] ≤ 1

2
.

Hence, we have that for all t ∈ {0, . . . , T − 1}

E [lt(at)] ≥
1

3
·
(

1

2
· 1

2
+

1

2
·
(

1

2
− ε

))
+

2

3
·
(

1

2
− ε

)
≥ 1

2
− 5ε

6
.

3

Here, the expectation is also over the choice of i∗. On the other hand,

E

[
min
i∈[N]

T∑
t=1

lt(i)

]
≤ E

[
T∑
t=1

lt(i
∗)

]
≤
(

1

2
− ε

)
· T .

Thus, we have that

E [RT] ≥
(

1

2
− 5ε

6

)
· T −

(
1

2
− ε

)
· T ≥ εT

6
≥ 1

6
·
√

NT

60
.

References

[K07] R. Kleinberg, “Multi-Armed Bandit Problems”, Lecture notes on “Learning, Games,
and Electronic Markets”.

4

