1 The Method of Types

Fix a finite universe U with $|U|=m$, and let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a sequence with each element drawn i.i.d. from some distribution Q over U.

Definition 1.1 The type $P_{\mathbf{x}}$ of \mathbf{x}, also called the empirical distribution of \mathbf{x}, is a distribution \hat{P} on U. Here \hat{P} is defined by

$$
\forall a \in U: \hat{P}(a)=\frac{\left|\left\{i: x_{i}=a\right\}\right|}{n} .
$$

The number of possible types on U^{n} is $\binom{n+m-1}{m-1} \leq(n+1)^{m}$. The type class of a type P is $\mathcal{T}_{P}^{n}:=\left\{\mathbf{x} \in U^{n}: P_{\mathbf{x}}=P\right\}$.
First, we bound the size of a given type class in terms of the entropy of that type.
Proposition 1.2 For any type P on U^{n}, we have

$$
\frac{2^{n H(P)}}{(n+1)^{m}} \leq\left|\mathcal{T}_{P}^{n}\right| \leq 2^{n H(P)}
$$

Proof: For each $a_{i} \in U$, let $P\left(a_{i}\right)=k_{i} / n$. Then $\left|\mathcal{T}_{P}^{n}\right|=n!/\left(k_{1}!k_{2}!\ldots k_{m}!\right)$. So for the upper bound:

$$
\begin{aligned}
n^{n} & =\left(k_{1}+k_{2}+\cdots+k_{m}\right)^{n} \\
& =\sum_{j_{1}+\cdots+j_{m}=n} \frac{n!}{j_{1}!\ldots j_{m}!} \cdot\left(k_{1}^{j_{1}} \ldots k_{m}^{j_{m}}\right) \\
& \geq \frac{n!}{k_{1}!\ldots k_{m}!} \cdot\left(k_{1}^{k_{1}} \ldots k_{m}^{k_{m}}\right) \\
n^{n} & \geq\left|\mathcal{T}_{P}^{n}\right| \cdot\left(k_{1}^{k_{1}} \ldots k_{m}^{k_{m}}\right) \\
\left|\mathcal{T}_{P}^{n}\right| & \leq \frac{n^{k_{1}+k_{2}+\cdots+k_{m}}}{k_{1}^{k_{1}} \ldots k_{m}^{k_{m}}} \\
& =\left(\frac{n}{k_{1}}\right)^{k_{1}} \cdots\left(\frac{n}{k_{m}}\right)^{k_{m}} \\
& =2^{k_{1} \log \left(n / k_{1}\right)+\cdots+k_{m} \log \left(n / k_{m}\right)} \\
& =2^{n\left(P\left(a_{1}\right) \log \left(1 / P\left(a_{1}\right)\right)+\cdots+P\left(a_{m}\right) \log \left(1 / P\left(a_{m}\right)\right)\right)} \\
& =2^{n H(P)} .
\end{aligned}
$$

For the lower bound:

$$
\begin{align*}
n^{n} & =\left(k_{1}+k_{2}+\cdots+k_{m}\right)^{n} \\
& =\sum_{j_{1}+\cdots+j_{m}=n} \frac{n!}{j_{1}!\ldots j_{m}!}\left(k_{1}^{j_{1}} \ldots k_{m}^{j_{m}}\right) \\
& \leq\binom{ n+m-1}{m-1} \max _{j_{1}+\cdots+j_{m}=n} \frac{n!}{j_{1}!\ldots j_{m}!}\left(k_{1}^{j_{1}} \ldots k_{m}^{j_{m}}\right) \\
& =\binom{n+m-1}{m-1} \frac{n!}{k_{1}!\ldots k_{m}!}\left(k_{1}^{k_{1}} \ldots k_{m}^{k_{m}}\right) \tag{1}\\
& \leq(n+1)^{m} \frac{n!}{k_{1}!\ldots k_{m}!}\left(k_{1}^{k_{1}} \ldots k_{m}^{k_{m}}\right) \\
\frac{1}{(n+1)^{m}} \frac{n^{k_{1}+k_{2}+\cdots+k_{m}}}{k_{1}^{k_{1}} \ldots k_{m}^{k_{m}}} & \leq \frac{n!}{k_{1}!\ldots k_{m}!} \\
\frac{2^{n H(P)}}{(n+1)^{m}} & \leq\left|T_{P}^{n}\right|
\end{align*}
$$

(Here (1) is left as an exercise. Hint: if $j_{r}>k_{r}$ for some r, then $j_{s}<k_{s}$ for some s.)

Proposition 1.3 Sequences of the same type are assigned the same probability by any product distribution Q^{n}.

Proof: Let $Q^{n}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} Q\left(X_{i}\right)$ be the product distribution on U^{n}, obtained from some distribution Q. Then we have:

$$
Q^{n}(\mathbf{x})=\prod_{a \in U}(Q(a))^{\left|\left\{i: x_{i}=1\right\}\right|}=\prod_{a \in U}(Q(a))^{n P_{\mathbf{x}}(a)}
$$

So if $P_{\mathbf{x}}=P_{\mathbf{y}}$, then $Q^{n}(\mathbf{x})=Q^{n}(\mathbf{y})$.

Now we give bounds on the probability of a certain type occurring, in terms of the KL divergence of the true distribution from the empirical distribution.

Theorem 1.4 For any product distribution Q^{n} and type P on U^{n}, we have

$$
\frac{2^{-n D(P \| Q)}}{(n+1)^{m}} \leq \operatorname{Prob}_{Q^{n}}\left(T_{P}^{n}\right) \leq 2^{-n D(P \| Q)}
$$

Proof: Let \mathbf{x} be of type $P_{\mathbf{x}}=P$. For the upper bound:

$$
\begin{aligned}
\frac{Q^{n}(\mathbf{x})}{P^{n}(\mathbf{x})} & =\frac{\prod_{a \in U}(Q(a))^{n P(a)}}{\prod_{a \in U}(P(a))^{n P(a)}} \\
& =\prod_{a \in U}\left(\frac{Q(a)}{P(a)}\right)^{n P(a)} \\
& =2^{n \sum_{a \in U} P(a) \log \left(\frac{Q(a)}{P(a)}\right)} \\
& =2^{-n D(P \| Q)} \\
Q^{n}(\mathbf{x}) & =P^{n}(\mathbf{x}) 2^{-n D(P \| Q)} \\
\sum_{\mathbf{y} \in \mathcal{T}_{P}^{n}} Q^{n}(\mathbf{y}) & =\sum_{\mathbf{y} \in \mathcal{T}_{P}^{n}} P^{n}(\mathbf{y}) 2^{-n D(P \| Q)} \\
\operatorname{Prob}_{Q^{n}}\left(\mathcal{T}_{P}^{n}\right) & \leq 2^{-n D(P \| Q)} .
\end{aligned}
$$

For the lower bound:

$$
\begin{aligned}
\underset{Q^{n}}{\operatorname{Prob}}\left(\mathcal{T}_{P}^{n}\right) & =\left|\mathcal{T}_{P}^{n}\right| \cdot P^{n}(\mathbf{x}) \cdot 2^{-n D(P \| Q)} \\
& =\left|\mathcal{T}_{P}^{n}\right| \cdot\left(\frac{k_{1}}{n}\right)^{k_{1}} \ldots\left(\frac{k_{m}}{n}\right)^{k_{m}} 2^{-n D(P \| Q)} \\
& =\left|\mathcal{T}_{P}^{n}\right| \cdot 2^{-n H(P)} \cdot 2^{-n D(P \| Q)} \\
& \geq \frac{2^{n H(P)}}{(n+1)^{m}} \cdot 2^{-n H(P)} \cdot 2^{-n D(P \| Q)} \\
& \geq \frac{2^{-n D(P \| Q)}}{(n+1)^{m}},
\end{aligned}
$$

using Proposition 1.2.
It may be that $\operatorname{Supp}(Q) \subsetneq \operatorname{Supp}(P)$, i.e. $\exists a \in U: Q(a)=0, P(a) \neq 0$. Then the $\log (1 / Q(a))$ term makes $D(P \| Q)$ undefined, so thinking of $D(P \| Q)$ as $+\infty, 2^{-n D(P \| Q)}=\operatorname{Prob}_{Q^{n}}\left(T_{P}^{n}\right)=0$.

2 Chernoff bounds

Take $U=\{0,1\}$, and let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a sequence drawn from U^{n} according to Q^{n}, where

$$
Q=\left\{\begin{array}{lll}
0 & : & \text { with probability } 1 / 2 \\
1 & : & \text { with probability } 1 / 2
\end{array}\right.
$$

We expect there to be around $n / 2$ occurrences of 1 in \mathbf{X}; that is, $\mathbb{E}\left[\sum_{i=1}^{n} x_{i}\right]=n / 2$. It is natural to ask how much the empirical distribution is likely to deviate from $n / 2$. If we set

$$
P=\left\{\begin{array}{ll}
0 & : \\
1 & \text { with probability } 1 / 2-\varepsilon \\
1 & :
\end{array} \quad \text { with probability } 1 / 2+\varepsilon,\right.
$$

then we have

$$
\begin{align*}
\operatorname{Prob}_{Q^{n}}\left(X_{1}+\cdots+X_{n}=\frac{n}{2}+\varepsilon n\right) & =\underset{Q^{n}}{\operatorname{Prob}}\left(T_{P}^{n}\right) \tag{2}\\
& \leq 2^{-n D(P \| Q)} \tag{3}\\
& =2^{-n c \varepsilon^{2}}, \tag{4}
\end{align*}
$$

by Theorem 1.4, for a constant c. This gives one answer to our question, but we may want to know how likely we are to see any sufficiently large deviation.

Theorem 2.1 (Chernoff bound) For $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right) \sim_{Q^{n}} U^{n}$ with Q the uniform distribution on $U=\{0,1\}$, we have

$$
\operatorname{Prob}_{Q^{n}}\left(\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] \geq \frac{n}{2}+\varepsilon n\right) \leq(n+1)^{2} \cdot 2^{-n D\left(P^{*} \| Q\right)}
$$

where

$$
P^{*}=\left\{\begin{array}{lll}
0 & : & \text { with probability } 1 / 2-\varepsilon \\
1 & : & \text { with probability } 1 / 2+\varepsilon .
\end{array}\right.
$$

Proof:
Let $|U|=m$. By Theorem 1.4, for any type P on U, we have $Q^{n}\left(T_{P}^{n}\right) \leq 2^{-n D(P \| Q)}$. For any δ :

$$
\begin{aligned}
\underset{Q^{n}}{\operatorname{Prob}}\left(\mathbf{x}: D\left(P_{\mathbf{x}} \| Q\right) \geq \delta\right) & \leq \sum_{P: D(P \| Q) \geq \delta} \underset{Q^{n}}{\operatorname{Prob}}\left(\mathcal{T}_{P}^{n}\right) \\
& \leq \sum_{P: D(P \| Q) \geq \delta} 2^{-n D(P \| Q)} \\
& \leq \sum_{P} 2^{-n \delta} \\
& \leq(n+1)^{m} \cdot 2^{-n \delta}
\end{aligned}
$$

Note that the $(n+1)^{m}$ term was obtained by counting all types on U^{n}, not just the ones with $D(P \| Q) \geq \delta$, so this might be improved somewhat. For the case where $U=\{0,1\}$, if $P_{\mathbf{X}}(1) \geq 1 / 2+\varepsilon$ then $D\left(P_{\mathbf{x}} \| Q\right) \geq D\left(P^{*} \| Q\right):=\delta$. Hence,

$$
\begin{aligned}
\underset{Q^{n}}{\operatorname{Prob}}\left(\mathbf{x}: \sum_{i=1}^{n} x_{i} \geq \frac{n}{2}+\varepsilon n\right) & =\underset{Q^{n}}{\operatorname{Prob}}\left(\mathbf{x}: P_{\mathbf{x}}(1) \geq 1 / 2+\varepsilon\right) \\
& \leq \operatorname{Prob}_{Q^{n}}\left(\mathbf{x}: D\left(P_{\mathbf{x}} \| Q\right) \geq \delta\right) \\
& \leq(n+1)^{|U|} \cdot 2^{-n \delta} \\
& \leq(n+1)^{2} \cdot 2^{-n D\left(P^{*} \| Q\right)}
\end{aligned}
$$

3 Sanov's theorem (preview)

We obtained the bound

$$
-D(P \| Q)-\frac{\log (n+1)^{m}}{n} \leq \frac{\log \left(\operatorname{Prob}_{Q^{n}}\left(\mathbf{X} \in T_{P}^{n}\right)\right)}{n} \leq-D(P \| Q) .
$$

With m held constant, $\frac{1}{n} \log \left(\operatorname{Prob}_{Q^{n}}\left(\mathbf{x} \in \mathcal{T}_{P}^{n}\right)\right) \rightarrow-D(P \| Q)$ as $n \rightarrow \infty$.
Theorem 3.1 (Sanov's theorem) Let Π be a set of distributions which is equal to the closure of its interior. Then as $n \rightarrow \infty$,

$$
\frac{1}{n} \log \left(\underset{Q^{n}}{\operatorname{Prob}}\left(\mathbf{x} \in \mathcal{T}_{P}^{n}\right)\right) \rightarrow-D\left(P^{*} \| Q\right)
$$

where

$$
P^{*}=\arg \min _{P \in \Pi} D(P \| Q) .
$$

We will prove this theorem in the next lecture.

