Information and Coding Theory Autumn 2014
Lecture 7: October 21, 2014

Lecturer: Madhur Tulsiani Scribe: Tsvi Benson-Tilsen

1 The Method of Types

Fix a finite universe U with |U| = m, and let x = (x1, z2,...,%,) be a sequence with each element
drawn i.i.d. from some distribution @ over U.

Definition 1.1 The type Px of X, also called the empirical distribution of x, is a distribution P
on U. Here P 1is defined by

VaGU:P(a):w.

n

The number of possible types on U™ is (";Ln’f;l) < (n+ 1)™. The type class of a type P is
5 ={xeU": Py =P}

First, we bound the size of a given type class in terms of the entropy of that type.

Proposition 1.2 For any type P on U™, we have
ont (P)

=< < gnH(P)
i = 7Pls

Proof: For each a; € U, let P(a;) = k;i/n. Then |T7| = n!/(kilks!... kp!). So for the upper
bound:
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For the lower bound:
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(Here (1) is left as an exercise. Hint: if j, > k, for some r, then js < ks for some s.) ]

Proposition 1.3 Sequences of the same type are assigned the same probability by any product
distribution Q.

Proof: Let Q"(X1,...,X,) = [[I.; Q(X;) be the product distribution on U", obtained from
some distribution ). Then we have:

Qn(x) = H(Q(a))\{zwlil}\ — H(Q(a))an(a) )
acU acl
Soif Px = Py, then Q"(x) = Q"(y). .

Now we give bounds on the probability of a certain type occurring, in terms of the KL divergence
of the true distribution from the empirical distribution.

Theorem 1.4 For any product distribution Q" and type P on U™, we have
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Proof: Let x be of type Px = P. For the upper bound:
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For the lower bound:

Prob(TE) = [TE| - P"(x) -2 "1
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using Proposition 1.2.

It may be that Supp(Q) € Supp(P), i.e. Ja € U : Q(a) =0, P(a) # 0. Then the log(1/Q(a)) term
makes D(P||Q) undefined, so thinking of D(P||Q) as +oc, 27"PPIQ) = Probgn (TE) = 0. ]

2 Chernoff bounds

Take U = {0,1}, and let x = (x1,...,x,) be a sequence drawn from U™ according to Q™, where

Q= 0 with probability 1/2
| 1 : with probability 1/2.

We expect there to be around n/2 occurrences of 1 in X; that is, E[>"" ; ;] = n/2. It is natural
to ask how much the empirical distribution is likely to deviate from n/2. If we set

p_ 0 : with probability 1/2 — ¢
| 1 : with probability 1/2 + ¢,



then we have

Pégb(Xl ++ X = g +en) = qu?(gb(Tﬁ) (2)
< 9~ nD(PIQ) (3)
— 2—nc&2 , (4)

by Theorem 1.4, for a constant c. This gives one answer to our question, but we may want to know
how likely we are to see any sufficiently large deviation.

Theorem 2.1 (Chernoff bound) For X = (X1,...,X,) ~gn U™ with Q the uniform distribu-
tion on U = {0, 1}, we have
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pr_ 0 : with probability /2 — ¢
1 :  with probability /2 + ¢ .
Proof:

Let |U| = m. By Theorem 1.4, for any type P on U, we have Q"(T3) < 2-nD(PIQ) " For any 6:

Prob(x: D(P[lQ) > 46) < > Prob(7p)
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Note that the (n + 1)™ term was obtained by counting all types on U™, not just the ones with

D(P||Q) > 9, so this might be improved somewhat. For the case where U = {0, 1}, if Px(1) > /24«
then D(Px||Q) > D(P*||Q) := ¢. Hence,
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3 Sanov’s theorem (preview)

We obtained the bound

_ log(n+1)™ < log (Probgn (X € TR))

S ; < -D(P|Q).

—D(P|Q)
With m held constant, 1 log (Probgr(x € T3)) — —D(P||Q) as n — <.

Theorem 3.1 (Sanov’s theorem) Let I1 be a set of distributions which is equal to the closure of
its interior. Then as n — o0,

1
g (Prb(x € TF) ) > ~D(P1Q).

where
P = min D(P||Q) .
argpellr_l[ (PllQ)

We will prove this theorem in the next lecture.



