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1 The Method of Types

Fix a finite universe U with |U | = m, and let x = (x1, x2, . . . , xn) be a sequence with each element
drawn i.i.d. from some distribution Q over U .

Definition 1.1 The type Px of x, also called the empirical distribution of x, is a distribution P̂
on U . Here P̂ is defined by

∀a ∈ U : P̂ (a) =
|{i : xi = a}|

n
.

The number of possible types on Un is
(
n+m−1
m−1

)
≤ (n + 1)m. The type class of a type P is

T nP := {x ∈ Un : Px = P}.
First, we bound the size of a given type class in terms of the entropy of that type.

Proposition 1.2 For any type P on Un, we have

2nH(P )

(n+ 1)m
≤ |T nP | ≤ 2nH(P ) .

Proof: For each ai ∈ U , let P (ai) = ki/n. Then |T nP | = n!/(k1!k2! . . . km!). So for the upper
bound:

nn = (k1 + k2 + · · ·+ km)n

=
∑

j1+···+jm=n

n!

j1! . . . jm!
· (kj11 . . . kjmm )

≥ n!

k1! . . . km!
· (kk11 . . . kkmm )

nn ≥ |T nP | · (k
k1
1 . . . kkmm )

|T nP | ≤
nk1+k2+···+km

kk11 . . . kkmm

=

(
n

k1

)k1
. . .

(
n

km

)km
= 2k1 log(n/k1)+···+km log(n/km)

= 2n(P (a1) log(1/P (a1))+···+P (am) log(1/P (am)))

= 2nH(P ) .
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For the lower bound:

nn = (k1 + k2 + · · ·+ km)n

=
∑

j1+···+jm=n

n!

j1! . . . jm!
(kj11 . . . kjmm )

≤
(
n+m− 1

m− 1

)
max

j1+···+jm=n

n!

j1! . . . jm!
(kj11 . . . kjmm )

=

(
n+m− 1

m− 1

)
n!

k1! . . . km!
(kk11 . . . kkmm ) (1)

≤ (n+ 1)m
n!

k1! . . . km!
(kk11 . . . kkmm )

1

(n+ 1)m
nk1+k2+···+km

kk11 . . . kkmm
≤ n!

k1! . . . km!

2nH(P )

(n+ 1)m
≤ |TnP | .

(Here (1) is left as an exercise. Hint: if jr > kr for some r, then js < ks for some s.)

Proposition 1.3 Sequences of the same type are assigned the same probability by any product
distribution Qn.

Proof: Let Qn(X1, . . . , Xn) =
∏n
i=1Q(Xi) be the product distribution on Un, obtained from

some distribution Q. Then we have:

Qn(x) =
∏
a∈U

(Q(a))|{i:xi=1}| =
∏
a∈U

(Q(a))nPx(a) .

So if Px = Py, then Qn(x) = Qn(y).

Now we give bounds on the probability of a certain type occurring, in terms of the KL divergence
of the true distribution from the empirical distribution.

Theorem 1.4 For any product distribution Qn and type P on Un, we have

2−nD(P‖Q)

(n+ 1)m
≤ Prob

Qn
(TnP ) ≤ 2−nD(P‖Q) .
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Proof: Let x be of type Px = P . For the upper bound:

Qn(x)

Pn(x)
=

∏
a∈U (Q(a))nP (a)∏
a∈U (P (a))nP (a)

=
∏
a∈U

(
Q(a)

P (a)

)nP (a)

= 2
n
∑

a∈U P (a) log
(

Q(a)
P (a)

)
= 2−nD(P‖Q)

Qn(x) = Pn(x)2−nD(P‖Q)∑
y∈T n

P

Qn(y) =
∑
y∈T n

P

Pn(y)2−nD(P‖Q)

Prob
Qn

(T nP ) ≤ 2−nD(P‖Q) .

For the lower bound:

Prob
Qn

(T nP ) = |T nP | · Pn(x) · 2−nD(P‖Q)

= |T nP | ·
(
k1

n

)k1
. . .

(
km
n

)km
2−nD(P‖Q)

= |T nP | · ·2−nH(P ) · 2−nD(P‖Q)

≥ 2nH(P )

(n+ 1)m
· 2−nH(P ) · 2−nD(P‖Q)

≥ 2−nD(P‖Q)

(n+ 1)m
,

using Proposition 1.2.

It may be that Supp(Q) ( Supp(P ), i.e. ∃a ∈ U : Q(a) = 0, P (a) 6= 0. Then the log(1/Q(a)) term
makes D(P‖Q) undefined, so thinking of D(P‖Q) as +∞, 2−nD(P‖Q) = ProbQn(TnP ) = 0.

2 Chernoff bounds

Take U = {0, 1}, and let x = (x1, . . . , xn) be a sequence drawn from Un according to Qn, where

Q =

{
0 : with probability 1/2

1 : with probability 1/2 .

We expect there to be around n/2 occurrences of 1 in X; that is, E[
∑n

i=1 xi] = n/2. It is natural
to ask how much the empirical distribution is likely to deviate from n/2. If we set

P =

{
0 : with probability 1/2− ε
1 : with probability 1/2 + ε ,
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then we have

Prob
Qn

(X1 + · · ·+Xn =
n

2
+ εn) = Prob

Qn
(TnP ) (2)

≤ 2−nD(P‖Q) (3)

= 2−ncε
2
, (4)

by Theorem 1.4, for a constant c. This gives one answer to our question, but we may want to know
how likely we are to see any sufficiently large deviation.

Theorem 2.1 (Chernoff bound) For X = (X1, . . . , Xn) ∼Qn Un with Q the uniform distribu-
tion on U = {0, 1}, we have

Prob
Qn

(
E

[
n∑
i=1

Xi

]
≥ n

2
+ εn

)
≤ (n+ 1)2 · 2−nD(P ∗‖Q) ,

where

P ∗ =

{
0 : with probability 1/2− ε
1 : with probability 1/2 + ε .

Proof:

Let |U | = m. By Theorem 1.4, for any type P on U , we have Qn(TnP ) ≤ 2−nD(P‖Q). For any δ:

Prob
Qn

(x : D(Px‖Q) ≥ δ) ≤
∑

P :D(P‖Q)≥δ

Prob
Qn

(T nP )

≤
∑

P :D(P‖Q)≥δ

2−nD(P‖Q)

≤
∑
P

2−nδ

≤ (n+ 1)m · 2−nδ .

Note that the (n + 1)m term was obtained by counting all types on Un, not just the ones with
D(P‖Q) ≥ δ, so this might be improved somewhat. For the case where U = {0, 1}, if PX(1) ≥ 1/2+ε
then D(Px‖Q) ≥ D(P ∗‖Q) := δ. Hence,

Prob
Qn

(
x :

n∑
i=1

xi ≥
n

2
+ εn

)
= Prob

Qn
(x : Px(1) ≥ 1/2 + ε)

≤ Prob
Qn

(x : D(Px‖Q) ≥ δ)

≤ (n+ 1)|U | · 2−nδ

≤ (n+ 1)2 · 2−nD(P ∗‖Q) .
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3 Sanov’s theorem (preview)

We obtained the bound

−D(P‖Q)− log(n+ 1)m

n
≤

log (ProbQn(X ∈ TnP ))

n
≤ −D(P‖Q) .

With m held constant, 1
n log (ProbQn(x ∈ T nP ))→ −D(P‖Q) as n→∞.

Theorem 3.1 (Sanov’s theorem) Let Π be a set of distributions which is equal to the closure of
its interior. Then as n→∞,

1

n
log

(
Prob
Qn

(x ∈ T nP )

)
→ −D(P ∗‖Q) ,

where
P ∗ = arg min

P∈Π
D(P‖Q) .

We will prove this theorem in the next lecture.
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