
Information and Coding Theory Autumn 2014

Lecture 8: October 23, 2014

Lecturer: Madhur Tulsiani Scribe: Alexander Dunlap

As in the notes from the previous lecture, x = (x1, . . . , xn) will denote a sequence of n elements,
each drawn from a finite universe U with |U | = m. For a sequence x, we use Px to denote its type
(empirical distribution). We will use Pn to denote the set of all types for sequences of length n.
Recall from the previous lecture that |Pn| ≤ (n+ 1)m.

1 Sanov’s theorem (continued)

Theorem 1.1 (Sanov) Let Π be a set of distributions on U , and m = |U |. Let

P ∗ = argminP∈ΠD(P‖Q).

Then
P
Qn

[Px ∈ Π] ≤ (n+ 1)m2−D(P ∗‖Q).

If Π is the closure of an open set, then

1

n
log P

Qn
[Px ∈ Π]→ −D(P ∗‖Q).

We will need the following bound proved in the last lecture:

P
Qn

[D(Px||Q) ≥ δ] ≤ (n+ 1)m · 2−nδ.

Let’s review the proof. We have

P
Qn

[x ∈ TP ] ≤ 2−nD(P‖Q) .

Let Cδ = {P ∈ Pn | D(P‖Q) ≥ δ}. Then, we have

P
Qn

[D(Px‖Q) ≥ δ] = P
Qn

 ⋃
P∈Cδ

(x ∈ TP )


≤ |Cδ| · 2−nδ

≤ (n+ 1)m · 2−nδ

We now use this to prove Sanov’s theorem.
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Proof: Take δ = D(P ∗‖Q), so for all P ∈ Π we have D(P‖Q) ≥ δ. Then we get

P
Qn

[Px ∈ Π] = P
Qn

[Px ∈ Π ∩ Pn]

≤ P
Qn

[D(Px‖Q) ≥ δ]

≤ (n+ 1)m2−nδ

= (n+ 1)m2−nD(P ∗‖Q)

as desired. Now let’s prove the other direction. Since Π is the closure of an open set and P ∗ ∈ Π,
there is an n0 such that we can find a sequence {P (n)}n≥n0 satisfying P (n) → P ∗ and P (n) ∈ Pn∩Π
for each n. Then we have

P
Qn

[Px ∈ Π] = P
Qn

[Px ∈ Π]

= P
Qn

[Px ∈ Π ∩ Pn]

≥ P
Qn

[
Px = P (n)

]
≥ 1

(n+ 1)m
2−nD(P (n)‖Q)

Thus we get

−D(P (n)‖Q)− m log(n+ 1)

n
≤ 1

n
log P

Qn
[Px ∈ Π] ≤ −D(P ∗‖Q) +

m log(n+ 1)

n

and
1

n
P
Qn

[Px ∈ Π]→ −D(P ∗‖Q).

Note that the upper bound on the probability in Sanov’s theorem holds for any Π. However, for
the lower bound we need some conditions on Π. This is necessary since if (for example) Π is a set of
distributions such that all probabilities in all the distributions are irrational, then PQn [Px ∈ Π] = 0.
In particular, we cannot get any lower bound on this probability for such a Π.

We now show how to compute P ∗ for a special family of distributions Π. Such a family is sometimes
called a linear family.

An example: finding P ∗ for a linear family Π

Let f : U → R. Let’s try to compute PQn
[

1
n

∑n
i=1 f(xi) ≥ α

]
. Note that

1

n

n∑
i=1

f(xi) =
∑
a∈U

Px(a)f(a).

Let

Π =

{
P :

∑
a∈U

P (a)f(a) ≥ α

}
.
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Then the probability we want is PQn [Px ∈ Π]. We have that

1

n
log P

Qn
[Px ∈ Π]→ −D(P ∗‖Q).

And
P ∗ = argminP∈ΠD(P‖Q)

(Assume that
∑
Q(a)f(a) < α.) Then we want to minimize D(P‖Q) so that

∑
P (a)f(a) = α

(which must be true for P ∗) and
∑
P (a) = 1. The Lagrangian is D(P‖Q) +λ1(

∑
P (a)f(a)−α) +

λ2(
∑
P (a)− 1); we want to find stationary points of this function. The resulting constraints are

P ∗(a) = Q(a) · 2λf(a) · c2cλ2

and
P ∗(a) = Q(a) · 2λf(a) · c′

where

c′ =
1∑

Q(a)2λf(a)
.

λ is such that
∑
P ∗(a)f(a) = α. Thus, we solve for λ in the equation∑

Q(a)2λf(a)f(a)∑
Q(a)2λf(a)

= α.

Exercise. Solve for λ if U = {1, 2, 3, 4}, f = {0, 1, 1/2, 1/2}, Q = {1/2, 1/6, 1/6, 1/6}.

2 Hypothesis testing

Setup for hypothesis testing. Null hypothesis (H0): true distribution is P (or, more generally, in
Π). Test T : Un → {0, 1}. 0 means that H0 is true, and 1 means that H0 is false. Two types of
errors: type-1 (false positive: incorrectly reject H0) has probability PPn [T (x) = 1], type-2 (false
negative: incorrectly fail to reject H0) has probability PQn [T (x) = 0] if the true distribution is Q.
Note that the probability of a type-2 error depends on the true distribution Q; this dependence
cannot be eliminated.

The way our test will work is T (x) = 1 ⇐⇒ D(Px‖P ) ≥ δ).
Then we can compute the probability of a type-1 error as

P
Pn

[D(Px‖P ) ≥ δ] ≤ (n+ 1)m2−nδ ≤ 1

n+ 1

if we assign δ = (m+1) log(n+1)
n .

Then we want to find the probability of a type-2 error PQn [T (x) = 0]. The claim is that

1

n
log P

Qn
[T (x) = 0]→ −D(P‖Q).

Exercise. Try proving it.
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