
TTIC/CMSC 31150 Mathematical Toolkit Spring 2013

Lecture 5: April 17, 2013

Madhur Tulsiani Scribe: Somaye Hashemifar

1 Chernoff bounds recap

We recall the Chernoff/Hoeffding bounds we derived in the last lecture. Let Z be a sum of n
independent 0/1 random variables {Xi} and E [Z] = µ. Then we have

P [Z ≥ (1 + σ)µ] ≤
[

eσ

(1 + σ)(1+σ)

]µ
.

Now, let’s look at a large deviation using Chernoff bounds:

P [Z ≥ eµ] ≤
(
ee−1

ee

)µ
= e−µ .

When (1 + σ) is even larger i.e. (1 + σ) ≥ 2e, using Chernoff bound we would have

P [Z ≥ (1 + σ)µ] ≤
(

e

1 + σ

)(1+σ)µ

≤ 2−(1+σ)µ .

2 Permutation routing in hypercube

We now continue the description of the randomized routing scheme for the hypercube graph. Recall
that the n-dimensional binary hypercube graph is a graph with N = 2n nodes where

• V = {0, 1}n

• (x, y) ∈ E if x, y ∈ V and x and y differ in just one bit.

Let π : {0, 1}n → {0, 1}n be any permutation of the nodes. The goal is to send a packet from node
x to node π(x), simultaneously for all nodes x. Recall that we are working in the synchronous
model, where at each time instant we are allowed to send at most one packet across each edge of
the hypercube. If there are multiple packets waiting to cross an edge at time t, then we put them
in a queue and choose one packet to cross that edge (the method for choosing a packet out of the
queue can be arbitrary). Also, we are interested in oblivious routing schemes, such that the path
of the packet from x to π(x) depends only on x and π(x) and not on the destinations of any other
packets. We will prove the following result due to Brebner and Valiant [BV81].

1

Theorem 2.1 ([BV81]) There is a randomized oblivious scheme to route packets from each x ∈ V
to π[x], which takes time O(n) with probability 1− 2−Ω(n).

In the description below, we identify a packet with its source and refer to the packet being routed
from x to π(x) as “packet x”. We now describe the routing scheme.

Scheme: The randomized routing scheme has two phases.

• Phase 1: Packet x chooses a random intermediate destination γ(x) ∈ {0, 1}n and goes to
γ(x) using the “bit-fixing” path.

• Phase 2: Packet x goes from γ(x)to π(x) using the “bit-fixing” path.

Recall that a “bit-fixing” path between i and j is a path obtained by flipping bits of i that are
different from j in a fixed sequence to reach j. For example a bit-fixing path from i = 0011001
to j = 111001 in the hypercube {0, 1}7 is i = 0011001 → 1011001 → 1111001 → 1110001 = j. A
bit-fixing path is always a shortest path from i to j in the hypercube.

Basic idea: Since π(x) is a permutation, the two phases are symmetric. It will be sufficient to
show that the time taken in Phase 1 is O(n) with high probability. Let Px be the bit-fixing path
from x to γ(x) and T (x) be the total time taken by packet x. Also, let D(x) be the delay for packet
going from x to γ(x) i.e., the time spent by packet x without moving when it is waiting in a queue
at some intermediate node. Then T (x) ≤ n+D(x).

We want to show that D(x) is small for every x. The following claim provides an upper bound on
D(x).

Claim 2.2 For all x ∈ {0, 1}n,

D(x) ≤ number of paths intersecting Px = |{y 6= x : Py ∩ Px 6= ∅}| .

We first analyze the routing scheme assuming the above claim. For each x, we define the random
variable Zx

Zx = |{y 6= x : Py ∩ Px 6= ∅}|

We want to show that Zx is O(n) for each x. We first derive an upper bound on Zx. Let Px be the
path (e1, . . . , ek). Then

Zx ≤
x∑
i=1

(
paths passing through ei

)
.

Note that in the above description the path (e1, . . . , ek) and its length k are also random. Since
we do not want to compute any bounds conditioned on the choice of Px, we will in fact show that
with high probability, for every bit-fixing path P, the number of paths Py intersecting P is O(n).
Fix an arbitrary bit-fixing path P = (e1, . . . , ek) and define

NP = |{y ∈ {0, 1}n : P ∩ Py 6= ∅}| ≤
∑
i

Nei ,

2

Where an edge ei, Nei denotes the number of paths passing through ei. By symmetry, we must
have that E [Ne] is the same for all e ∈ E. Then,

∑
e

E [Ne] = E

[∑
e

Ne

]
= E

[∑
x

|Px|

]
= 2n · n

2
.

Note that in the above we are counting (x, y) and (y, x) as different edges. Thus, the number of
edges is 2n · n, which gives E [Ne] = 1/2 for all e. Thus, we have for each path P ,

E [NP] =
∑
i

E [Nei] = |P | · 1

2
≤ n

2
.

Also, NP can be written as a sum of 2n−1 independent random variables IP,y where

IP,y =

{
1 if P ∩ Py 6= ∅
0 otherwise

.

Thus, can now bound the probability that NP is large using Chernoff bounds. Since 2e ≤ 6, we
have

P [NP ≥ 3n] ≤ 2−3n .

Note that the number of bit-fixing paths is at most 22n, since the path can be specified by specifying
a start and an end. Thus, the probability that for any P , NP is greater than 3n is at most
22n · 2−3n = 2−n. Also, for any x, we have that Zx ≤ NPx ≤ 3n. Thus, with probability at least
1− 2−n, the time taken by all packets in phase 1 is at most n+ 3n = 4n. We now prove Claim 2.2

Proof of Claim 2.2: First note that, in the hypercube, when two bit-fixing paths diverge
they will not come together again; i.e. paths which intersect will intersect only in one contiguous
segment. Let Px = (e1, , . . . , ek). For every packet y which goes through Px (at least for some
time), define the lag of packet y at the start the time step t is as t− i, where ei is the next edge that
packet y wants to traverse. Note that at time t, all packets waiting to cross an edge must have the
same lag. At each time step, one of these packets crosses the edge and its lag remains unchanged
(or it exits the path) and the lag of the remaining packets increases by 1.

The lag of the packet x goes from 0 to D(x). We will charge each increase in the lag of packet x to
a unique y such that Py ∩ Px 6= ∅. Consider the time step t when the lag of packet x goes from L
to L+ 1; suppose this happens when it is waiting to traverse edge ei. Then x must be held up in
the queue at ei (else its lag would not increase), so there exists at least one other packet at ei with
lag L, and this packet actually moves at step t. For any such packet, at each step either it moves
and its lag remains L, or it waits an edge and some other packet with lag L crosses the edge. Now
consider the last time at which there exists a packet y with lag L. This packet must exit the path
or its lag will remain L. We can charge this packet y for increasing the lag of packet x from L to
L+ 1. Each packet y is charged at most once, because it is charged only when it leaves Px which
by the observation at the start of the proof, happens only once.

3

3 Balanced Allocations

We consider the following problem of allocating jobs to servers: We are given a set of n servers
1, . . . , n and m jobs arrive one by one. We seek to assign each job to one of the servers so that the
loads placed on all servers are as balanced as possible.

In developing simple, effective load balancing algorithms, randomization often proves to be a useful
tool. We consider two approaches for this problem:

• Random Choice: one possible way to distribute the jobs is to simply place each job on a
random server, chosen independently of the previous allocations.

• Two Random Choices: For each job, we choose two servers independently and uniformly
at random and place the job on the server with less load (breaking ties arbitrarily).

We will show that using two random choices significantly reduces the maximum load on any server.
For the entire analysis, we will work with the case when m = n. The analysis easily extends to
an arbitrary m, but it easier to appreciate the bounds when m = O(n) (and in particular when
m = n).

It is convenient to think of the above in terms of the so called “balls and bins” model. Each job can
be thought of a s ball and each server is a bin. We think of assigning job j to a server i as throwing
the jth ball in bin i. The load of a server is the same as the number of balls in the corresponding
bin.

3.1 Random choice

Suppose Zi = number of balls in bin i. We can write

Zi =
∑
j

Xij , where Xij =

{
1 if ball j is thrown in bin i
0 otherwise

.

Then, we have that each Zi is a sum of m(= n) independent random variables with E [Zi] = 1. Let
K = lnn

ln lnn . By Chernoff/Hoeffding bounds, we have that for each i,

P [Zi ≥ K] ≤
(e
K

)K
.

Thus, the probability that there exists an i such that Zi ≥ K is at most n ·
(
e
K

)K
, which is at most

lnn
n for the above value of K. Hence, with probability at least 1 − lnn

n , the maximum number of

balls in a bin is at most lnn
ln lnn .

3.2 The power of two random choices

We will now show that two random choices can reduce the maximum load to O(ln lnn). The proof
technique is due to Azar et al. [ABKU94] and various applications were explored by Mitzenmacher
in his thesis [Mitz96]. We first provide the intuition for the proof.

4

For each i, let Bi denote the number of bins with at least i balls. Suppose Bi ≤ βi for some bound
βi. Then Bi+1 is bounded above by a binomial random variable corresponding to the number
of heads in n independent coin tosses, where the probability of each toss being heads is at most
(βi/n)2. This is because for a ball to land a bin such that the load of the bin becomes greater
than i, it must happen that both the random bins which we chose to put it in, had load at least i.
This happens with probability at most (βi/n)2. Thus, Bi+1 is upper bounded by the above random

variable, which we denote as Bin

(
n,
(
βi
n

)2
)

.

This, E [Bi+1] ≤ n ·
(
βi
n

)2
and Bi+1 is at most e · β

2
i
n with high probability. We can then take βi+1

to be e · β
2
i
n . For the above sequence, the value of βi becomes less than 1 for i0 = O(ln lnn), and

thus we can bound the maximum load by i0. The proof will follow this intuition, except that for
the last step, when E [Bi] becomes very small, we will not be able to use a Chernoff bound and will
have to resort to a slightly different analysis.

We first define the values βi. Let β6 = n
2e and βi+1 = e · n ·

(
βi
n

)2
.

β6 =
n

2e

⇒ β7 = e

(
n

2e

)2

n =
n

4e
=

n

22e

⇒ β8 = e

(
n

4e

)2

n =
n

16e
=

n

222e

⇒ β9 = e

(
n

16e

)2

n =
n

256e
=

n

223e
...

⇒ βi =
n

22i−6e

Let Ei be the event that Bi ≤ βi. Note that E6 holds for sure since there can be at most n/6 ≤ n/2e
bins with 6 or more balls. We show that with high probability, if Ei holds then Ei+1 holds provided
β2
i ≥ 2n lnn.

Claim 3.1 Let i be such that β2
i ≥ 2n lnn. Then,

P [¬Ei+1 | Ei] ≤
1

n2
· 1

P [Ei]
.

Proof: The proof follows from a direct calculation. We have

P [¬Ei+1 | Ei] =
P [∼ Ei+1 ∧ Ei]

P [Ei]

≤
P

[
Bin

(
n,

(
βi
n

)2
)
≥ en

(
βi
n

)2
]

P [Ei]

≤ e−n·(βi/n)2

P [Ei]
≤ 1

n2
· 1

P [Ei]

5

when β2 ≥ 2n lnn.

We can then use induction to show that for each i as above, the probability of the event Ei not
happening is very low.

Claim 3.2 For all i such that β2
i ≥ 2n lnn, we have

P [¬Ei+1] ≤ i+ 1

n2
.

Proof: We prove the claim by induction on i. We know from the definition of β6 that P [¬E6] = 0.
Also, from the previous claim, we have that for any i as above,

P [¬Ei+1] = P [Ei] · P [¬Ei+1|Ei] + P [¬Ei] · P [¬Ei+1|¬Ei]

≤ P [Ei] ·
1

n2
· 1

P [Ei]
+

i

n2

≤ i+ 1

n2
.

We will need a slightly different analysis when β2
i < 2n lnn, which we will cover in the next lecture.

References

[BV81] G. Brebner and L. Valiant, “Universal Schemes for Parallel Communication”, Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing, 1981, pp. 263–
277.

[ABKU94] Y. Azar, A. Z. Broder, A. R. Karlin and E. Upfal, “Balanced Allocations”, Pro-
ceedings of the 26th Annual ACM Symposium on Theory of Computing, 1994, pp. 593–
602.

[Mitz96] M. Mitzenmacher, “The Power of Two Choices in Randomized Load Balancing”,
PhD thesis, University of California Berkeley, 1996.

6

