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Weighted Low Rank Approximations

 What is a ‘weighted low rank approximation'?
— What is a ‘low rank approximation’?

 Why weighted low rank approximations?

 How do we find a weighted low rank
approximation?

 What can we do with weighted low rank
approximations?



Low Rank Approximation
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Low Rank Approximation
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«Compression (mostly to reduce processing time)
*Prediction: collaborative filtering

*Reconstructing latent signal
—biological processes through gene expression

«Capturing structure in a corpus
—documents, images, etc

*Basic building block, e.g. for non-linear dimensionality
reduction



Low Rank Approximation
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rank k lid Gaussian
noise
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log L(X; A) ZlogP(A | X,) =2 Z(A - X,)? + const

Max likelihood low-rank matrix given iid Gaussian noise

— |ow-rank X minimizing sum-squared error

given explicitly in terms of SVD



Weighted Low Rank Approximation
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Find low-rank matrix minimizing weighted sum-squared-error
[Young 1940]




Weighted Low Rank Approximation

low-rank matrix minimizing weighted sum-squared error

External information about noise variance for
each measurement
e.g. in gene expression analysis

Missing data (0/1 weights)

collaborative filtering

Different number of samples
e.g. Separating Style and content [Tenenbaum Freeman 00]

Varying importance of different entries
e.g. 2D filters [shpak 90, Lu et al 97]

Subroutine for further generalizations



How?

Given A and W, find rank k matrix X
minimizing the weighted sum-square difference

S, (A, - X,)
I



(Unweighted) Low Rank Approximation



(Unweighted) Low Rank Approximation
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(Unweighted) Low Rank Approximation
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(Unweighted) Low Rank Approximation
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(Unweighted) Low Rank Approximation

oJWV') o .o UVare correspondingly spanned

ou,V by eigenvectors of AA’and A’A

Global .- UVare correspondingly spanned
Minimum by leading eigenvectors

U,V spanned by eigenvectors of AA’ and AA’
—>  J(UV)=|A-UVT =D i,




(Unweighted) Low Rank Approximation

oJWV') o .o UVare correspondingly spanned

ou,V by eigenvectors of AA’and A’A

Global .- UVare correspondingly spanned
Minimum by leading eigenvectors

All other fixed points are saddle points
(no non-global local minima)




Weighted Low Rank Approximation

ZWA uv'y:

oJ S B
S =2AWV-A) WV =0

U =A %l/(V'%V)‘1

If rank(W)=1, (V'W,V) can be simultaneously diagonalized
= eigen-methods apply [iranianandan 2000]

Otherwise, eigen-methods cannot be used,
solutions are not incremental



WLRA' Optimization

ZWA uv'y:

For fixed V, find optimal U
For fixed U, find optimal V
J* (V) =minJ(UV")

2 S (V)= 22U (U*V'-Y)Q W)

Conjugate gradient descent on J*

k

Optimize kd parameters instead of k(d+n)



Local Minima in WLRA
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WLRA: An EM Approach

0/1 weights:

A

A=X+/L

observations N(0,1) noise

parameters




WLRA: An EM Approach

Expectation Step:

missing A [ij] <X][i,j]

Maximization Step:

X LRA(ﬁZAfj

A=X+Z,
ank

same low-r independent noise Z,
for all targets A, for each target A,




WLRA: An EM Approach

Expectation Step:

missing A [i,j] <X[i ]

Maximization Step:

X « LRA(%ZAJ
A,FX"‘Z,, W '

WLRA(A, W) with WJi jJ=w[i,jl/N

= | A [i,j]=A[Lj], or missing if w[i,j]<r

X—LRA(WRA+(1-W)®X)




WLRA' Optimization

ZWA uv'y:

For fixed V, find optimal U
For fixed U, find optimal V
J* (V) =minJ(UV")
(V) =20 (U V'-A) QW)

Conjugate gradient descent on J*

X—LRA(WRA+(1-W)®X)




Estimations of a "planted” X with
Non-ldentical Noise Variances
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Reconst. Err: normalized sum 2 diff to planted



Collaborative Filtering of
Joke Preferences (“Jester”)
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[Goldberg 2001]



Collaborative Filtering of
Joke Preferences (“Jester”)

Test Error

SVD, unobserved=0,
observed rescaled to

preserve mean
[Azar+ 2001]

SVD on always

observed columns
[Goldberg+ 2001]

SVD,

unobserved=0
[BillsusPazzani 98]




WLRA as a Subroutine for Other
Cost Functions

Z (,4// — X// )2 = Low Rank Approximation (PCA)
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Logistic Low Rank Regression

[Collins+ 2002, Gordon 2003, Schein+ 2003]




Logistic Low Rank Regression

[Collins+ 2002, Gordon 2003, Schein+ 2003]
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Maximum Likelihood Estimation
with Gaussian Mixture Noise

Y X + Z C

observed rank k noise (hidden)

Mixture of Gaussians:
{Po 0}

E step: calculate posteriors of C

M step: WLRA with
< Pr(C;=c) - Pr(C; = ¢) i
VV/J'_; Gg ’4/]_)//]4'; (72 /W

Y



Weighted Low Rank Approximations

Nathan Srebro Tommi Jaakkola

Weights often appropriate in low rank approximation
WLRA more complicated than unweighted LRA
— Eigenmethods (SVD) do not apply

— Non-incremental

— Local minima

Optimization approaches:

— Alternate optimization

— Gradient methods on J*(V)

— EM method: X—LRA(WRA+(1-W)®X)

WLRA useful as subroutine for more general loss
functions

www.csall .mit.edu/~nati/LowRank/
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(Unweighted) Low Rank Approximation

oJWV') _, .. UVare correspondingly spanned

ou,V by eigenvectors of AA’and A’A

=




(Unweighted) Low Rank Approximation
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(Unweighted) Low Rank Approximation
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(Unweighted) Low Rank Approximation

oJWV') _, .. UVare correspondingly spanned

ou,V by eigenvectors of AA’and A’A

Global .. UVare correspondingly spanned
Minimum by leading eigenvectors
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