Weighted Low Rank Approximations

Nathan Srebro and Tommi Jaakkola

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Weighted Low Rank Approximations

- What is a 'weighted low rank approximation'?
 - What is a 'low rank approximation'?
- Why weighted low rank approximations?

 How do we find a weighted low rank approximation?

What can we do with weighted low rank approximations?

- Compression (mostly to reduce processing time)
- Prediction: collaborative filtering
- Reconstructing latent signal
 - -biological processes through gene expression
- Capturing structure in a corpus
 - -documents, images, etc
- Basic building block, e.g. for non-linear dimensionality reduction

$$\log L(X;A) = \sum_{ij} \log P(A_{ij} \mid X_{ij}) = \frac{-1}{2\sigma^2} \sum_{ij} (A_{ij} - X_{ij})^2 + const$$

Max likelihood low-rank matrix given iid Gaussian noise

low-rank X minimizing sum-squared error

given explicitly in terms of SVD

$$= \begin{bmatrix} X \\ \text{rank } k \end{bmatrix} + \begin{bmatrix} Z \\ \text{Gaussian noise} \end{bmatrix}$$

$$Z_{ij} \sim \mathcal{N}(0, \sigma_{ij}^{2})$$

$$\log L(X;A) = \sum_{ij} \log P(A_{ij} \mid X_{ij}) = -\sum_{ij} W_{ij} (A_{ij} - X_{ij})^{2} + const$$

$$W_{ij} (A_{ij} - X_{ij})^{2} + const$$

Find low-rank matrix minimizing weighted sum-squared-error
[Young 1940]

low-rank matrix minimizing weighted sum-squared error

- External information about noise variance for each measurement
 - e.g. in gene expression analysis
- Missing data (0/1 weights) collaborative filtering
- Different number of samples
 e.g. separating style and content [Tenenbaum Freeman 00]
- Varying importance of different entries
 e.g. 2D filters [Shpak 90, Lu et al 97]
- Subroutine for further generalizations

How?

Given A and W, find rank *k* matrix X minimizing the weighted sum-square difference

$$\sum_{ij} W_{ij} (A_{ij} - X_{ij})^2$$

$$\frac{J(X)}{\text{objective}} = \begin{bmatrix} A \\ A \\ \text{target} \end{bmatrix} - \begin{bmatrix} X \\ \text{rank } K \end{bmatrix}$$

$$\frac{\partial J}{\partial U} = 2(UV' - A)V = 0 \qquad \qquad \frac{\partial J}{\partial V} = 2(VU' - A')U = 0$$

$$UV'V=AV$$
 $V =A'U$

$$\frac{\partial J(UV')}{\partial U,V} = 0 \quad \Longleftrightarrow \quad$$

U,V are correspondingly spanned by eigenvectors of *AA* and *A'A*

$$\frac{\partial J}{\partial U} = 2(UV' - A)V = 0$$

$$UV^{\dagger}V=AV$$

$$\frac{\partial J}{\partial V} = 2(VU' - A')U = 0$$

$$V = A'AV$$

$$\frac{\partial J(UV')}{\partial U,V} = 0 \quad \Longleftrightarrow \quad$$

U, V are correspondingly spanned by eigenvectors of AA' and A'A

Global **Minimum**

U, V are correspondingly spanned by leading eigenvectors

U, V spanned by eigenvectors of AA' and AA'

$$\Rightarrow$$

$$\frac{\partial J(UV')}{\partial U,V} = 0 \quad \Longleftrightarrow \quad$$

U, V are correspondingly spanned by eigenvectors of AA' and A'A

Global **Minimum**

U, V are correspondingly spanned by leading eigenvectors

All other fixed points are saddle points (no non-global local minima)

$$J(UV') = \sum_{ij} W_{ij} (A - UV')_{ij}^2$$

$$\frac{\partial J}{\partial U} = 2((UV'-A) \cdot W)V = 0$$

$$U_{i} = A_{i} \underline{W_{i}} V (V' \underline{W_{i}} V)^{-1}$$

If rank(W)=1, $(V'\underline{W_i}V)$ can be simultaneously diagonalized \Rightarrow eigen-methods apply [IraniAnandan 2000]

Otherwise, eigen-methods cannot be used, solutions are not incremental

WLRA: Optimization

$$J(UV') = \sum_{ij} W_{ij} (A - UV')_{ij}^2$$

For fixed *V*, find optimal *U* For fixed *U*, find optimal *V*

$$J^*(V) = \min_{\mathcal{U}} J(\mathcal{U}V')$$

$$\frac{\partial}{\partial V} J^*(V) = 2U^*'((U^*V'-Y) \otimes W)$$

Conjugate gradient descent on J*

Optimize kd parameters instead of k(d+n)

Local Minima in WLRA

$$A = \begin{bmatrix} 1 & 1.1 \\ 1 & -1 \end{bmatrix} \quad W = \begin{bmatrix} 1+\alpha & 1 \\ 1 & 1+\alpha \end{bmatrix}$$

WLRA: An EM Approach

0/1 weights:

WLRA: An EM Approach

Expectation Step:

missing $A_r[i,j] \leftarrow X[i,j]$

Maximization Step:

$$X \leftarrow \text{LRA}\left(\frac{1}{N}\sum_{r}A_{r}\right)$$

same low-rank X for all targets A_r

independent noise Z_r for each target A_r

WLRA: An EM Approach

Expectation Step:

missing $A_r[i,j] \leftarrow X[i,j]$

Maximization Step:

$$X \leftarrow \mathsf{LRA} \left(\frac{1}{N} \sum_r A_r \right)$$

$$A_r = X + Z_r$$

integer

WLRA(A,W) with W[i,j]=w[i,j]/N

 $\Rightarrow A_r[i,j]=A[i,j], or missing if w[i,j]< r$

$$X \leftarrow LRA(W \otimes A + (1-W) \otimes X)$$

WLRA: Optimization

$$J(UV') = \sum_{ij} W_{ij} (A - UV')_{ij}^2$$

For fixed *V*, find optimal *U* For fixed *U*, find optimal *V*

$$J^*(V) = \min_{\mathcal{U}} J(\mathcal{U}V')$$
$$\frac{\partial}{\partial V} J^*(V') = 2U^{*'}((U^*V' - A) \otimes W)$$

Conjugate gradient descent on J*

$$X \leftarrow LRA(W \otimes A + (1-W) \otimes X)$$

Estimations of a "planted" X with Non-Identical Noise Variances

Collaborative Filtering of Joke Preferences ("Jester")

Collaborative Filtering of Joke Preferences ("Jester")

WLRA as a Subroutine for Other Cost Functions

$$\sum_{ij} (A_{ij} - X_{ij})^2$$

⇒ Low Rank Approximation (PCA)

$$\sum_{ij} W_{ij} (A_{ij} - X_{ij})^2$$

⇒ Weighted Low Rank Approximation

$$\sum_{ij} Loss(A_{ij}, X_{ij})$$

Logistic Low Rank Regression

[Collins+ 2002, Gordon 2003, Schein+ 2003]

$$Loss(Y,X) = \sum_{ij} \log g(Y_{ij},X_{ij})$$

$$\approx -\sum_{ij} \frac{g(Y_{ij}X_{ij}^{(t-1)})g(-Y_{ij}X_{ij}^{(t-1)})}{2} \left(X_{ij}^{(t)} - \left(X_{ij}^{(t-1)} + \frac{Y_{ij}}{g(Y_{ij}X_{ij}^{(t-1)})}\right)\right)^{2} + Const$$

Logistic Low Rank Regression

[Collins+ 2002, Gordon 2003, Schein+ 2003]

$$Loss(Y, X) = \sum_{ij} \log g(Y_{ij}, X_{ij})$$

$$\approx -\sum_{ij} W_{ij}^{(t)} \left(X_{ij}^{(t)} - \left(A_{ij}^{(t)}\right)^{2} + Const$$

$$W_{ij}^{(t)} = \frac{g(Y_{ij}X_{ij}^{(t-1)})g(-Y_{ij}X_{ij}^{(t-1)})}{2} \left(A_{ij}^{(t)} - \left(A_{ij}^{(t)}\right)^{2} + \frac{Y_{ij}}{g(Y_{ij}Y_{ij}^{(t-1)})}\right)$$

Maximum Likelihood Estimation with Gaussian Mixture Noise

E step: calculate posteriors of C

M step: WLRA with

$$W_{ij} = \sum_{c} \frac{\Pr(C_{ij} = c)}{\sigma_{C}^{2}} \qquad A_{ij} = Y_{ij} + \sum_{c} \frac{\Pr(C_{ij} = c)\mu_{C}}{\sigma_{C}^{2}} / W_{ij}$$

Weighted Low Rank Approximations

Nathan Srebro Tommi Jaakkola

- Weights often appropriate in low rank approximation
- WLRA more complicated than unweighted LRA
 - Eigenmethods (SVD) do not apply
 - Non-incremental
 - Local minima
- Optimization approaches:
 - Alternate optimization
 - Gradient methods on $J^*(V)$
 - EM method: X←LRA($W \otimes A$ +(1-W) $\otimes X$)
- WLRA useful as subroutine for more general loss functions

www.csail.mit.edu/~nati/LowRank/

END

Local Minima in WLRA

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad W = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

$$J=3$$

$$X = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{2}{3} \end{bmatrix} \quad X = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ -\frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

$$J=2\frac{1}{3}$$

$$J=2\frac{1}{3}$$

$$\frac{\partial J(UV')}{\partial U,V}=0$$

U,V are correspondingly spanned by eigenvectors of *AA* and *A'A*

$$A = U_0$$

$$\frac{\partial J(UV')}{\partial U,V} = 0 \quad \longleftarrow$$

U, V are correspondingly spanned by eigenvectors of AA' and A'A

$$A = U_0 S$$

$$Q_{U'}$$

$$|U| = |U_0S|^{Q_U}$$

$$|V| = |V_0|Q_V$$

$$\frac{\partial J(UV')}{\partial U,V} = 0 \quad \Longleftrightarrow \quad$$

U,V are correspondingly spanned by eigenvectors of *AA* and *A'A*

$$A = U_0$$

$$\|A\|^2 = \sum_{\alpha} s_{\alpha}^2$$

$$ig\| oldsymbol{\mathcal{U}} oldsymbol{\mathcal{V}} ig\|^2 = \sum_{\mathsf{selected}} oldsymbol{\mathcal{S}}_lpha^2$$

$$\|A - UV'\|^2 = \sum_{\text{unselected } \alpha} s_{\alpha}^2$$

$$\frac{\partial J(UV')}{\partial U,V}=0$$

U,V are correspondingly spanned by eigenvectors of *AA* and *A'A*

Global Minimum

U,V are correspondingly spanned by leading eigenvectors

$$U = U_0 S$$

$$|V| = |V_0|^{1/\sqrt{1-1}}$$