
Learning Markov Networks: Maximum Bounded Tree-Width Graphs

David Karger∗ Nathan Srebro†

Abstract
Markov networks are a common class of graphical models used
in machine learning. Such models use an undirected graph to
capture dependency information among random variables in a joint
probability distribution. Once one has chosen to use a Markov
network model, one aims to choose the model that “best explains”
the data that has been observed—this model can then be used to
make predictions about future data.

We show that the problem of learning a maximum likelihood
Markov network given certain observed data can be reduced to
the problem of identifying a maximum weight low-treewidth graph
under a given input weight function. We give the first constant
factor approximation algorithm for this problem. More precisely,
for any fixed treewidth objectivek, we find a treewidth-k graph with
anf(k) fraction of the maximum possible weight of any treewidth-
k graph.

1 Introduction

In this paper, we study a generalization of the maximum
spanning tree problem: finding a maximum weight subgraph
of bounded treewidth. This problem is motivated by a
machine learning application: learning maximum-likelihood
graphical models to fit data from an empirically sampled
probability distribution. We show how our (NP-complete)
graph problem arises naturally from this application. We
then give the first approximation algorithms for the problem,
achieving a polynomial-time constant-factor approximation
for any fixed treewidth objective.

1.1 The Problem.One of the important areas of machine
learning is the development and use ofprobabilistic models
for classification and prediction. One popular probabilistic
model [Pea97] is the class ofMarkov networks, which use
a graph to represent dependencies among the variables in
the probabilistic model. Given this graph, a particular
probability distribution on the variables can be succinctly
represented by specifying the (marginal) joint probability
distribution over each set of variables that forms a clique.

In order to avoid over-fitting, it is important that the
graph have no large cliques. At the same time, for efficient
use of the model, the graph needs to be triangulated. Com-
bining these two objectives yields the actual requirement:
that the underlying graph have smalltreewidth. Treewidth

∗Research supported by NSF grant CCR-9624239 and a Packard Foun-
dation Fellowship

†Research partially supported by NIH Genome Training Grant.
MIT Laboratory for Computer Science, Cambridge, MA 02139, USA.
{karger, natis }@theory.lcs.mit.edu

will be defined formally later; for now we note that only trees
have treewidth one, while a small treewidth means that the
graph is quite like a tree.

In some applications, the graphical model is specified in
advance. But in others, one begins with some observations
and tries to find the graphical model that best fits these
observations. Chow and Liu [CL68] show how the best
treewidth-1model (that is, tree) for the data can be found
via a maximum spanning tree computation on a graph whose
weights are determined by the values of the observed data.
Sometimes, however, a higher treewidth is needed to fit the
data well.

1.2 Our Results. We aim to learn, given some observed
data, the besttreewidth-k model of the data. We show
that this problem reduces to a pure graph problem: given a
candidate graph with weights on edges, and also on larger
cliques of size up tok + 1, find the maximum weight
treewidth-k subgraph of the input graph. We show that
for k > 1, this problem is NP-complete; even when only
edges (and not larger cliques) are weighted. We develop
approximation algorithms for it. For ann-vertex graph with
goal width k, in time nO(k), we find a treewidth-k graph
containing at least anf(k) fraction of the maximum possible
weight.

The running time of our algorithm is unsurprising, since
the input problem size isnO(k): a weight is specified for
every candidate clique of size up tok (and in problems de-
rived from machine learning, all these weights are usually
nonzero). It is not clear whether the dependence of our ap-
proximation factor on the goal treewidthk is necessary, but
we do in any case get a (weak) constant factor approxima-
tion for every fixedk, which is the case that is dealt with in
practice.

To the best of our knowledge, this is the first purely com-
binatorial formulation of the learning problem for general
treewidth. It provides, for the first time, hardness results and
provable approximation algorithms for the learning problem.
The approximation algorithm is of a “global” nature, as op-
posed to local search heuristics which have been suggested
before [Mal91].

Our approximation algorithm is based on two main
ideas. The first is the identification of a structure called a
k-windmill. While treewidth-k graphs can have complicated
structure,k-windmills are easier to work with. We show that

1

any treewidth-k graph places at least a constant fraction of
its weight in somek-windmill, and thus settle for approx-
imating a maximum weightk-windmill. To find this wind-
mill, we develop a linear-programming-based approximation
algorithm. The linear program bears some resemblance to
those in recent algorithms forfacility location[STA97]. Our
rounding scheme is quite different, however, and has an in-
teresting “iterative” approach similar to Jain’s recent algo-
rithm for network design [Jai98]: after solving the LP, we
randomly roundsomeof the fractional variables; we thenre-
solvethe linear program to make it feasible again before we
proceed to round other variables.

1.3 Related Work. The problem of finding a maximum
likelihood Markov network of bounded tree-width has been
investigated before (cf. [Pea97]). Malvestuto [Mal91] dis-
cussed the connection between this problem and maximal
acyclic hypergraphs (which we callhypertreeshere) and sug-
gested a local search heuristic using them.

Several other extensions to the work of Chow and Liu
[CL68] for tree-shaped Markov networks have recently been
proposed. Meila [MP99] suggested modeling distributions
as mixtures of tree-shaped Markov networks. Dasgupta
[Das99] suggested polytree Bayesian networks (trees with
oriented edges).

There is also work ondirectedgraphical models known
as Bayes Nets. Dagum and Luby focus on the problem
of, given a specific graphical model, learning the appropri-
ate setting of the joint probability distributions. They show
that even achieving good approximations for this problem
is NP-hard in the general case [DL93], but also give ap-
proximation algorithms that work well on a large class of
instances [DL97]. In contrast, as we will see below, learning
the distribution setting for a Markov network is trivial.

Most recent work on treewidth has been concerned with
showing that some input graphhassmall treewidth, and on
finding an appropriate tree decomposition [SG97, Bod97,
Bod96]. Here, we focus on a different problem. We would
like to find a graph of treewidth at mostk that captures the
greatest weight. We do not expect to be able to include all
the candidate edges, but rather aim to maximize what can
be included. While finding a tree-decomposition of a given
graph might be viewed as a covering problem (finding a low-
treewidth graph containing the target graph), our problem
is a sub-graph problem—finding a maximal small-treewidth
graph inside a given candidate graph.

2 Maximum-Likelihood Dependency Graphs

In this section we introduce and motivate our problem. To do
so we outline some concepts from machine learning that are
not critical to understanding the results in this paper. This
section provides the motivation for studying our problem,
but can be skipped without loss of understanding of the

algorithms.
One of the challenges of unsupervised learning, given

a sample of observations, is to determine the distribution
law from which the samples were drawn. The conjectured
distribution can be used to make predictions about future or
partially observed data. Often, each observed data point is
expressed as a vector of variables. A common approach
in probabilistic machine learning is to assume that each
data vector is drawn independently from some unknown
probability distribution over possible vector values. One
then aims to identify the probability distribution that best
explains the observed data. The notion of “best explains”
can be made concrete in many ways, but a common one is to
choose the model that maximizes the likelihood (probability)
of generating the observed data. This model is called the
maximum-likelihood model.

In learning, one always faces a tradeoff between finding
a model that fits the observed data and finding a model that
generalizes well: the best model of the data is one which
predicts that data and only that data, but is not usually useful
for dealing with new data. To avoidoverfittingthe data, one
can decide in advance on a limited class of possible models
(probability distributions) and choose the modelfrom that
classthat best fits the observed data. The model class should
be complex enough to allow a decent approximation of the
true distribution, yet not so complex as to cause overfitting.
The complexity of a class is often quantified by the number
of free parameters it allows.

For example, one very simple model class is one that
assumes that the variables in the observed vector areinde-
pendent, meaning that it is sufficient to develop a model for
each variable separately and then take the product distribu-
tion. Such a strong assumption, however, might not allow
good approximation when the true distribution contains im-
portant dependencies.

Thus, models are explored which attempt to capture a
few important dependencies, yet are limited enough to avoid
overfitting. Markov networksare a way to express such
a dependency structure. In the discussion below,X is a
random vector, andx is a possible sample value forX.

DEFINITION 2.1. We writeA ⊥ B | C for variable setsA,
B, andC, if the variables inA are independent of those in
B, conditioned onanyvalues of the variables inC.

DEFINITION 2.2. (MARKOV NETWORK) A random vector
XV , indexed by vertex setV , is a Markov networkover
an undirected graphG(V) iff each random variableXv,
conditioned on its neighbors, is independent of all other
elements ofXV :

(∀v ∈ V)(2.1)

Xv ⊥ {Xu | u 6= v, (u, v) /∈ G} | {Xu|(v, u) ∈ G}

It follows that if C separatesA and B in G, then for the
corresponding sets of random variables,XA ⊥ XB |XC .

Every distribution is a Markov network over the com-
plete graph: the independence requirement is satisfied vac-
uously. As a more interesting example, any finite-length
Markov chain is a Markov network whose underlying graph
is a path: each variable is directly dependent on only its pre-
decessor and successor. Note that ifX is a Markov network
overG, it is also a Markov network over any supergraph of
G: adding edges to the graph removes independence con-
straints and thus allows for a more general class of distri-
butions. The sparser a graph, the more limited the class of
Markov networks it models.

Of particular interest are Markov networks over triangu-
lated graphs.

DEFINITION 2.3. A graph is said to betriangulatediff it
does not contain any minimal cycles of more than three
vertices.

Over a triangulated graphG, all marginal distributions, and
therefore all conditional distributions, can be determined
from the marginal distributions over each maximal clique
in G. Given a stored representation of each of these clique
marginals, one can compute all other marginals and condi-
tional distributions in linear time—that is, linear in the size
of the tables needed to hold the clique marginals, and hence
exponential in the clique sizes. The number of free param-
eters for the Markov network is also roughly exponential
in the clique sizes. It is thus desirable to bound the clique
sizes, both to ensure feasible storage and computation-time
requirements, and to limit the model complexity and avoid
overfitting.

One possible scenario is that the graphG is specified in
advance (e.g. from prior knowledge about the relationships
between variables), and we limit ourselves to the class of
Markov networks overG. In such a scenario, and ifG
is triangulated, the maximum likelihood Markov network
X̃ over G can be explicitly calculated from the empirical
distributionP̂ (that is, the probability distribution in which
each of theT observed sample points is given probability
1/T , and all other sample points are given probability 0):

(2.2) PX̃(x) =
∏

h∈Clique(G)

φh(xh)

where theclique factorsφh are functions of the outcomes of
random variables indexed by the cliquexh = {xv|v ∈ h},
and are given by the following recursion:

(2.3) φh(xh) =
P̂h(xh)∏

h′⊂h φh′(xh′)
.

The product in (2.2) and the recursion (2.3) are over all, not
necessarily maximal, cliques. It is important to note that the

factor φh for any cliqueh depends only on the empirical
marginal distributionP̂h over the clique, and is completely
oblivious to the structure graphG, other than the fact that it
containsh as a clique.

In this work, we investigate the situation in which
the graph is unspecified, but required to be triangulated
and with bounded clique size. We would like to find the
maximum likelihood Markov network over any such graph.
The core problem is finding the maximum likelihood graph
itself (i.e. the graph over which the maximum likelihood
Markov network is achieved), since the maximum likelihood
distribution would then be specified by (2.2). We can
associate a maximum likelihood with every candidate graph
G—that is, the maximum, over all Markov networks over
G, of the probability of observing the data under the model.
We would like to find the triangulated, bounded clique-size
graphG with the largest maximum-likelihood.

For any candidate triangulated graphG, (2.2) specifies
the maximum likelihood Markov network over it, and thus
lets us analyze the maximum likelihoodL(G) that G can
achieve on the samples{xt}Tt=1. The probability the net
generates the data is just the product of the probabilities that
it generates each sample point, so

log L(G) = log
∏

t

∏
h∈Clique(G)

φh(xt
h)

=
∑

h∈Clique(G)

∑
t

log φh(xt
h)

we now plug in the optimum clique factors from (2.3) based
on the empirical distribution:

=
∑

h∈Clique(G)

∑
xh

T · P̂h(xh) log φh(xh)

= T
∑

h∈Clique(G)

EP̂ [log φh(Xh)](2.4)

For each candidate cliqueh, the termEP̂ [φh(Xh)] in the
sum depends only on the empirical marginal overh, and
not on the rest ofG. Consider a weight function over
candidate cliques, such thatw(h) = EP̂ [log φh(Xh)]. This
weight function can be calculated based on the empirical
distribution alone, using the explicit recursion:

w(h) = EP̂ [φh(Xh)]

= EP̂

[
P̂ (xh)∏

h′⊂h φh′(xh′)

]
= EP̂

[
log P̂ xh

]
−

∑
h′⊂h

EP̂ [log φh′(Xh′)]

= −H(P̂ (h))−
∑
h′⊂h

w(h′)(2.5)

whereH(P̂ (h)) is the entropy of the empirical marginal.
Note that a single vertex always forms a clique, and so

will always appear in the sum of (2.4). The contribution
of these singleton cliques is exactlylog L(∅), the log max-
imum likelihood of the data over a fully independent model,
where there are no edges, and all variables are independent.
Separating out the singletons, and using our newly defined
weights, we get:

(2.6) log L(G) = log L(∅) + T ·
∑

h∈Clique(G),|h|>1

w(h)

Equation (2.6) expresses the maximum likelihood of a
given candidate graph as a “gain” over a simple baseline
model, in which all variables are independent. The “gain” is
a simple sum of weights (derived from the empirical data) of
all non-trivial cliques that appear in the graph. Maximizing
the maximum-likelihood is thus equivalent to maximizing
this “gain”, so we can formulate the problem of finding the
maximum likelihood Markov network as one of finding a
triangulated graph of bounded clique size that maximizes
the total (summed) weight of its (not only maximal) cliques.
Note that the singleton weights are defined for the recursion
(2.5) but are not summed in calculating the weight of a graph.

Note that the log maximum likelihood is a negative
measure. The log maximum likelihood of the independent
model,log L(∅), is a negative quantity, and the gain is pos-
itive, which brings the log maximum likelihood ofG closer
to, but still usually far away from, zero. Log likelihoods
are usually very large magnitude negative numbers, whose
magnitude mostly reflects, and is bounded from above by,
the inherent entropy of the distribution being sampled. Be-
cause of this, it is common to analyze the improvement in
log-likelihood over some baseline model.

The approximation results presented in this paper are
also of this nature. The weight of the graphG is the gain
in maximum-log-likelihood, so by approximating the weight
of the graph, we approximate the gain in maximum-log-
likelihood.

Although the weight of a triangulated graph, being
the gain in log maximum likelihood, will always be non-
negative, the same cannot be said about individual weights.
The existence of negative weights is a potential pit-fall
in many combinatorial algorithms, including the ones pre-
sented here. However, the weights defined above (ignoring
the singleton weights) do have the following property which
enables our algorithms to work properly:

DEFINITION 2.4. (MONOTONEWEIGHTS) A weight func-
tion w : {h ⊂ V | |h| ≤ d} → < is said to bemono-
tone if for any |h1| ≤ d and h2 ⊂ h1,

∑
h′⊂h1

w(h′) ≥∑
h′⊂h2

w(h′).

It is also interesting to note that for every non-negative
weighting of potential cliques, there exists an empirical

distribution that yields weights proportional to this set of
weights [Sre00]. Thus the problem of finding a graph of
maximum weight over a non-negative weight function can be
reduced to finding a maximum likelihood Markov network
for empirical data. This reduction is weak, in the sense
that the sample size needed to produce specific weights is
polynomial in the values of the weights. Still, this is enough
to show the NP-hardness of finding a maximum-likelihood
triangulated Markov network of bounded clique size.

3 Problem definition

In the above section, we were able to reduce the maximum-
likelihood Markov network problem to the following: given
a weight for each candidate clique of size at mostk + 1,
find a triangulated graph with cliques of size at mostk + 1
that maximizes the summed weight of its cliques. As will
be defined below, the constraints on the graph specify that
it should havetreewidth at mostk. We will work with
a hypergraph view of tree width, which is similar to that
discussed by Bodlaender [Bod93], and will search for a
hypertree of width at mostk that maximizes the weight of
the hyperedges it covers.

3.1 Preliminaries: Graph and Hypergraphs. A graph
G(V) is a collection of unordered pairs (edges) of thevertex
setV : G(V) ⊂

(
V
2

)
. A hypergraphH(V) is a collection of

subsets (edges, or sometimes explicitlyhyper-edges) of the
vertex setV : H(V) ⊂ 2V . If h′ ⊂ h ∈ H then the edgeh′

is coveredby H. We slightly abuse the set-theory notation
and denoteh′ ∈ H even if h′ is only covered byH. A
hypergraph (or graph)H ′ is covered byH iff ∀h′∈H′h′ ∈ H
(all edges inH ′ are covered byH, i.e. are a subset of an
edge ofH); if so we writeH ′ ⊂ H.

Another way of viewing this notion of a hypergraph is
requiring that a hypergraph include all subsets of its edges.

3.2 Acyclic Hypergraphs and Treewidth. Recall that an
acyclic graph can be defined recursively as an empty graph,
or a graph containing aleaf, i.e. a vertex incident on a single
edge, such that removing the leaf yields an acyclic graph. We
will use a similar definition for acyclic hypergraphs.

DEFINITION 3.1. A vertex v of a hypergraphH(V) is
called a leaf if it appears only in a single maximal hyper-
edgeh ∈ H. The hyperedgeh is called thetwig of v.

DEFINITION 3.2. A hypergraphH(V) is said to beacyclic
if it is empty, or if it contains a leafv such that the induced
hypergraphH(V − v) is acyclic.

An acyclic hypergraph is also referred to as ahyperforest.
The implied iterative reduction process is called aGraham
reduction of the hyperforest. The twig of a vertex of a
hyperforest is taken to mean the twig of the vertex when

it is reduced. Note that although the twig is a maximal
hyperedge at the time of reduction, it might not be maximal
in the hyperforest itself. If we consider the underlying
triangulated graph of “normal” (2-endpoint) edges defined
by the hyperforest, a Graham ordering is an ordering in
which, as each vertex is eliminated, its neighbors form a
clique.

DEFINITION 3.3. The width of a hyperforestH(V) is the
size of its largest edge, minus one:maxh∈H |h| − 1.

Thus, the width of a standard tree is 1.
A hyperforest which is maximal among hyperforests of

the same width is said to be ahypertree. Since we are
concerned with maximum structures, we will be interested
mostly in hypertrees.

DEFINITION 3.4. A tree decompositionof a graphG(V) is
a covering hyperforestH(V) ⊇ G(V).

DEFINITION 3.5. The treewidthof a graph is the width of
the narrowest hyperforest covering it.

The following theorem establishes the well-known con-
nection between hyperforests and triangulated graphs:

DEFINITION 3.6. The clique-hypergraph of a graphG is
the hypergraph in which the hyperedges are the cliques of
G.

THEOREM 3.1. A hypergraph is acyclic if and only if it is
a clique hypergraph of some triangulated graph. A graph is
triangulated if and only if its clique hypergraph is acyclic.

COROLLARY 3.1. For a graph G, the treewidth ofG is
equal to the minimum over triangulationsG′ of G, of the
maximal clique size inG′, minus one:

(3.7) width(G) = min
triangG′⊇G

max |Clique(G′)| − 1

Many alternative equivalent definitions of hyperforests
and treewidth appear in the literature. For a survey and
details on the above definitions and results, see [Sre00].

3.3 The Maximal Hypertree Problem.As a consequence
of Theorem 3.1, we can discuss weights of hyperforests
instead of triangulated graphs with weights on cliques. When
working with standard graphs, a weight function assigns a
weight to each potential edge, i.e. pair of vertices, and
the weight of the graph is the sum of the weights of its
edges. However, for our applications, it is essential to assign
weights also to larger candidate hyperedges. A hyper-weight
function assigns a weight to candidate hyperedge of vertices
of arbitrary size, and the weight of a hypergraph is the sum
of the weights of edgescoveredby it: w(H) =

∑
h∈H w(h).

Recall (from Definition 2.4) that a hyper-weight function
assigning weights to edges of size up tod is monotoneif,
for everyh2 ⊂ h1, |h1| ≤ d, the weight of the hypergraph
with maximal edgeh2 is less than or equal to the weight of
the hypergraph with maximal edgeh1.

We are now ready to state the maximal hypertree prob-
lem:

Given as inputs:

• An integer treewidthk.

• A vertex setV and monotone weight function
w :

(
V

≤k+1

)
→ <+ on hyperedges of size up to

and includingk + 1.

Find a hypertreeH(V) of treewidth at mostk that
maximizesw(H).

Note that such a monotone weight function is also
monotone on hyperforests of width at mostk. Since every
hyperforest has a covering hypertree, the maximal hyperfor-
est can always be taken to be a hypertree. So this problem
could have also been stated as finding a maximal hyperforest.

Whenk = 1, the maximum hypertree problem is simply
the maximum spanning tree problem.

4 Windmills

General graphs of small treewidth are difficult to work with.
Therefore, we introduce a simpler graph structure that can be
used to capture much of the weight in hypertrees. LetT (V)
be a rooted tree on the verticesV , with root r and depth at
mostk (i.e. the longest path beginning atr hask edges). The
treeT (V) defines the following hierarchy of vertices:r is at
level zero. For any other vertexv ∈ V , consider the path
from r to v. Vertexv is said to be on thelevelequal to the
edge-length of the path. Nodes on the path fromr to v are
its ancestors.

DEFINITION 4.1. A k-windmill based on a rooted tree
T (V) is a hypertree whose maximal edges are the root-leaf
paths inT .

Such ak-windmill is a hypertree: its Graham reduction
follows the (standard) Graham reduction of leaves of the tree
T . 1-windmills are star graphs.

A k-windmill-farm is a hypergraph that is a disjoint
collection of windmills. Since each windmill is a hypertree,
a windmill-farm is a hyperforest.

THEOREM 4.1. (WINDMILL COVER THEOREM) For any
hyperforestH(V) of widthk and non-negative weight func-
tion w(·), there exists ak-windmill-farm F (V) such that
w(H) ≤ (k + 1)!w(F).

Proof. We use a labelling scheme followed by a random
selection scheme in which each hyperedge “survives” to be

included in the windmill with probability at least1/(k +1)!.
This means the total expected surviving weight is at least
w(F)/(k + 1)!, as desired. We then show that the surviving
edges form a windmill.

The scheme is based on a(k + 1)-coloring of the
vertices, such that no two vertices in the same hyperedge
have the same color. The existence of such a coloring can
be proven by induction on the Graham reduction of the
hyperforest: LetH(V) be a hyperforest with leafv, and
recursively colorH(V − v). The leaf v has at mostk
neighbors (other members of its unique maximal edge) in
H(V − v), leaving a color available forv. This inductive
proof specifies an ordering in which the vertices get colored.
This is the reverse of the order in which vertices were
Graham reduced. The order of coloring imposes on each
hyperedge a (possibly partial) permutation of the colors
used—namely, the order in which those colors were applied
to vertices of the hyperedge.

From this ordering we construct our windmill farm.
Choose a random permutation (ordering)π of the colors.
We define a windmill farmFπ to contain all hyperedges
whose color permutation (ordering) is consistent withπ. For
hyperedges withk + 1 vertices, consistent simply means
equal; for a hyperedge with fewer vertices, consistent means
that the colors thatdo appear in the hyperedge form a prefix
of the permutationπ.

The permutationπ of colors can be interpreted as a
mapping between the colors and thek + 1 levels of the
windmill-farm Fπ; each vertex now goes to the level of its
color. Each vertex of the first colorπ(1) is a root of a
windmill. Each vertexv of colorπ(i+1) is at leveli, with its
parent being the vertex coloredπ(i) in v’s twig (the unique
maximal hyperedge containingv when v was removed).
Note that if the twig does not have a vertex of colorπ(i)
then no hyperedge containingv is in Fπ: if v ∈ h ∈ Fπ,
then the partial color permutation imposed onh is at least an
i + 1-prefix of π and so must have a vertexu coloredπ(i)
which was colored beforev. But if u was colored beforev,
then it was reduced afterv, and it should appear inv’s twig.

To show thatFπ is indeed a windmill-farm over this tree
structure, it is enough to show that for everyv ∈ h ∈ Fπ of
colorπ(i+1), the vertex of colorπ(i) in h is the parent ofv.
Since the permutation ofh agrees withπ, a vertexu of color
π(i) exists inh and is colored beforev. The vertexu is thus
in v’s twig, and so isv’s parent.

The windmill-farmFπ might cover additional edges that
were not explicitly selected by the scheme above, but since
these have non-negative weight, the weight is at least the
weight of the edges selected. A hyperedge of sizer is
selected to be inFπ if it is consistent with the permutation;
this happens with probability(k + 1 − r)!/(k + 1)! ≥
1/(k + 1)!. Since the weight of edges is non-negative, the
expected value contributed by any edge of weightw to Fπ is

at leastw/(k + 1)!.

In fact, windmills can achieve the1/d! approximation
“simultaneously” for every edge of sized:

COROLLARY 4.1. For any hyperforestH(V) of widthk, let
wd be the total weight of hyperedges of sized (so that the
total weight of the hypertree is

∑
wd). Then there exists a

k-windmill-farm contained inH of weight at least
∑

wd/d!

Proof. We perform the above coloring and random selection,
but include an edge inFπ if its colors appear in the same
order inπ, as a prefix or as an arbitrary subsequence. Then
the probability that we include an edge ofd vertices is1/d!.
The parent ofv of colorπ(i + 1) is selected to be the vertex
in v’s twig of colorπ(j), for the maximumj ≤ i, for which
the twig includes such a vertex.

Note that under this selection criterion,Fπ does not
cover any additional edges not explicitly selected, and so
E [w(Fπ)] =

∑
wd/d! exactly.

Recall that we are actually interested in weight functions
that are not necessarily non-negative, but rather are mono-
tone. Even for such weight functions, a1/(k + 1)! fraction
can still be achieved:

COROLLARY 4.2. For any hyperforestH(V) of widthk and
monotone weight functionw(·), there exists ak-windmill-
farmF (V) such thatw(H) ≤ (k + 1)!w(F).

Proof. Perform the same selection process as in Theorem
4.1, but analyze the weight of the resulting windmill farm
differently. Instead of considering the weights of individual
edges, consider the weightg(v) gained when un-reducingv.
That is, the difference in weight of the hyperforests before
and after reducingv. Since every edge will be “gained” at
exactly one reduction,

∑
v g(v) = w(H). Furthermore, the

gain is a difference in weight between two hyperforests, and
so non-negative.

To analyze the expected weight ofFπ, start from an
empty hypergraph and add vertices according to their col-
oring (reverse reduction) order, keeping track of the weight
of the sub-windmill-farm induced byFπ on vertices colored
so far. Each colored vertex adds some non-negative gain.
If the color permutation of a vertex’s twig is a prefix ofπ,
the gained weight is exactlyg(v). Since this happens with
probability at least1/(k + 1)!, E [Fπ] ≥ w(F)/(k + 1)!.

We will devise an approximation algorithm for finding
a maximum weight windmill farm and use the above result
to infer that the maximum weight windmill farm, which is a
hyper-forest, is competitive relative to the maximum weight
hyper-tree.

4.1 Hardness Results. We present hardness results on
windmill approximation. It is important to note that these
do not extend to showing the hardness of approximation
of maximal hypertrees. While we can show that finding
a maximum hypertree, as well as a maximum likelihood
Markov network, is NP-hard, our analysis does not even
preclude the possibility of a PTAS. However, we conjecture
that our hardness results do extend to the hypertree problem.

THEOREM 4.2. For fixedk > 1, the maximum weightk-
windmill problem (and even the maximalk-windmill prob-
lem for unit weights) is max-SNP hard.

Proof. A reduction from max-2SAT

A similar reduction can be used to show NP-hardness of
the maximal hypertree problem for fixedk > 1 (even with
unit weights, and weights only on edges of size 2). However,
this reduction does not show hardness of approximation.

THEOREM 4.3. For k part of the input, and in particular
for somek = Ω(n), no polynomial time algorithm can find
an n1−ε approximation to the maximumk-windmill unless
P = NP .

Proof. A reduction from independent set, where each vertex
is converted to a path, and paths cross (so cannot be in the
same windmill) if the corresponding vertices are neighbors.

5 An Approximation Algorithm for 2-Windmills

In this section, we present some of our basic ideas in an algo-
rithm for the 2-windmill problem with non-negative weights.
Recall that a 2-windmill is a tree with a root, a child layer,
and a grandchild layer. We assume that there are weights
only on triplets (not pairs or singletons), but this assump-
tion can be made w.l.o.g. by adding an additional vertex
uv1,v2 for every pair(v1, v2) and settingw(v1, v2, uv1,v2)

.=
w(v1, v2) while all other weights involving the new vertex
uv1,v2 are set to zero.

5.1 Guessing Levels.For simplicity, we reduce to the case
where the level of each vertex (root, child, or grandchild)
is fixed. We do so by assigning each vertex to a random
level (probability 1/3 for each). Any triple that appears
in order v1, v2, v3 in the optimal solutions will have its 3
vertices given the optimal layers with probability(1/3)3 =
1/27. Thus in expectation at least1/27 of the weight of the
optimum solution will obey the level assignment, so there
will be a solution that obeys the level assignment and has
1/27 of the optimum weight.

5.2 An Integer Program. Given the levels, we specify
an integer linear program corresponding to the maximum 2-
windmill problem. The variables in the IP are as follows:

• A variable xv1,v2 for every first-level nodev1 and
second-level nodev2, which will be set to 1 ifv2 is a
child of v1.

• A variablexv1,v2,v3 for every triplet of first-, second-
and third-level nodes, respectively, which will be set to
1 if v3 belongs tov1 andto v2 (that is, thatv3 is a child
of v2 which is a child ofv1).

The integer program is then:

max
∑

v1,v2,v3

xv1,v2,v3wv1,v2,v3

(∀v2)
∑
v1

xv1,v2 = 1

(∀v3)
∑
v1,v2

xv1,v2,v3 = 1

(∀v1, v2, v3) xv1,v2,v3 ≤ xv1,v2

(∀v1, v2, v3) xv1,v2,v3 ≥ 0
(∀v1, v2) xv1,v2 ≥ 0

The first two equalities specify that each vertex is only on
one path from the root, and the first inequality specifies that
v3 cannot be on pathv1, v2, v3 unlessv2 is descended from
v1—we will refer to this as requiring consistency of the
paths.

To get an approximation to the integer program, we first
solve the relaxed linear program given by the above equa-
tions, and then perform the randomized rounding described
below.

5.3 Rounding. We now show how to round a fractional
solution, giving up a factor of less than 1.6 in the objective
function value. Our rounding uses the natural probability
distribution arising from the LP constraint that

∑
v1

xv1,v2 =
1; this suggests thatv2 can choose a parent vertex by
selectingv1 with probabilityxv1,v2 . However, this does not
show how to choose parents for the third level vertices. We
will, however, show that a simple two-step process works:
first we round the second-level vertices, and then we let
each third-level vertex make a greedy choice based on the
previous rounding.

More precisely, the rounding to an IP solutionx̃ from an
LP solutionx will be performed in two steps:

• For eachv2, assign onẽxv1,v2 = 1 at random according
to the distribution given byxv1,v2 . The rest will receive
value zero.

• For eachv3, assign onẽxv1,v2,v3 = 1 with the maxi-
mumwv1,v2,v3 among those(v1, v2) for which x̃v1,v2 =
1. The rest will receive value zero.

Note that the above rounding outputs a feasible IP
solution. To analyze its value, we will consider each third-
level vertex, and its contribution to the integer solution value,
separately.

LEMMA 5.1. Consider a set of items such that itemi has
weight wi. Suppose that each itemi becomes “active”
independently with probabilitypi where

∑
pi ≤ 1. Let W

be the maximum weight of any active item. Then

E[W] ≥ (1/2)
∑

wipi

Proof. By induction. Assume there aren weights ordered
such thatw0 ≥ w1 ≥ · · ·wn. Note that with probability
p0 item 0 becomes active and we getW = w0, while with
probability1− p0 we get the maximum of the “subproblem”
involving the remaining items. By induction, the expected
maximum active weight not including item 0 has value at
least(1/2)

∑
i>0 wipi. Observe also that

∑
i>0 wipi is (at

worst, since
∑

pi ≤ 1) a weighted average of items less
thanw0, so has value at mostw0. It follows that

E[W] = p0w0 + (1− p0)(1/2)
∑
i>0

piwi

= p0w0 + (1/2)
∑
i>0

piwi − p0(1/2)
∑
i>0

piwi

≥ p0w0 + (1/2)
∑
i>0

piwi − p0(1/2)w0

= (1/2)p0w0 + (1/2)
∑
i>0

piwi

as claimed.

This lemma can be applied to our rounding scheme. Fix
a particular third-level vertexv3. Its contribution to the frac-
tional LP objective value is

∑
v1,v2

xv1,v2,v3wv1,v2,v3 . Now
consider the rounding step. Vertexv3 is permitted to choose
parent pair(v1, v2), contributing weightwv1,v2,v3 to the ob-
jective, if v2 chooses parentv1, which happens with prob-
ability xv1,v2 ≥ xv1,v2,v3 . This almost fits the framework
of the lemma with the variablespi set toxv1,v2,v3 . There
are two differences but they only help us. First, we may
havexv1,v2 > xv1,v2,v3 ; however, this can only increase the
odds of choosing a large weight. Second, the variablesx are
not independent. However, they are negatively correlated:
the failure to choose some pairv1, v2 can onlyincrease the
chance that we instead choose some other pair. This again
only increases the expected contribution above the indepen-
dent case. It follows from the lemma that we expect a con-
tribution of at least

∑
wv1,v2,v3xv1,v2,v3/2 from vertexv3.

This analysis holds for all third-level variables, and
combining over all of them yields an approximation ratio of
1/2 between the rounded solution and the LP solution.

The farm we found thus has an expected weight of at
least1/324 of the weight of the maximal hypertree (a factor
of 1/2 for the rounding gap, 27 for the randomly assigned
levels, and 6 for the gap between a windmill farm and the
hypertree). A more careful analysis can improve the constant
to 1/108.

6 The General Case

Now we turn to the algorithm for general treewidth. We
formulate a more general integer program, for any width
k, monotone weights, which does not assume that the as-
signment to levels is known. Then we give a more general
rounding scheme—one that essentially applies the technique
of the previous section one layer at a time. Some care must
be taken to re-optimize the LP after each layer is rounded so
that rounding can be applied to the next layer.

6.1 A General Integer Program. Consider a variablexp

for each simple path inG of length between1 andk. Setting
xp to one corresponds to havingp as a path in a windmill in
the solution (in particular, the first node inxp is a root). We
use the notation|p| for the length of (number of nodes in)
a path andp · q, or p · v to denote the concatenation of two
paths, or a path and vertex.

The weightwp of a path is the gain in weight of adding
the last vertex ofp to the windmill. That is, forp = q · v,
wp =

∑
h⊆p w(h)−

∑
h⊆q w(h). Since the weight function

is monotone, it follows that the weights of paths are non-
negative.

The linear program has a single equation for each such
simple pathp · v, 0 ≤ |p| ≤ k. The variablexε (for the
empty path of length 0) appears in the linear program only
for uniformity of structure, but is set to one:

max
∑

p

xpwp

(∀p, v)
∑

q

xp·q·v ≤ xp

(∀p) xp ≥ 0
xε = 1

Both p and q in the inequality vary over simple paths
of length up tok in the graph, including the empty path.
Since we are only concerned with simple paths of length up
to k +1, v ∈ p is not allowed, and the sum is only over paths
of length at mostk−|p| that are disjoint fromp ·v. Note that
since only simple paths of length up tok + 1 have positive
weight, allowing additional variables and equations for non-
simple or longer paths will not affect the optimal solution.

The key constraint of the LP requires that the total
fractional quantity of paths that share a prefixp and terminate
in v is less than the fractional quantity of pathp. This is a

stronger constraint than the ones that arise naturally in the
integerlinear program:

• Forp = ε, the inequality specifies that every vertex is at
the end of only a single path.

• For anyv and |p| > 0, since all variables are non-
negative, and focusing onq = ε, the inequality implies
xp·v ≤ xp, requiring the consistency of paths as we did
in the 2-windmill case.

The more complex sum over nonempty pathsq is taken
to further limit the fractional polytope so as to reduce the
integrality gap and aid in rounding.

6.2 A Rounding Scheme. Suppose now that we relax
the integrality constraint and find a fractional solution. We
propose to round each level iteratively, in a fashion similar
to the previous section.

• Start with a solutionx0 to the LP, and no rounded
variables̃x.

• For i = 1 to k:

1. For each nodev, the LP constrains that∑
p xi−1

p·v ≤ 1. So choose a single pathp with
probabilityxi−1

p,v . If this pathp is of lengthi − 1,
setx̃p·v ← 1. In any case, for all other pathsp of
lengthi− 1, setx̃p·v ← 0.

2. Re-solve the LP, fixing all variables corresponding
to paths of length up toi to be constants equal to
their rounded values̃x. Takexi to be the solution
to thisith modified LP.

Note that since
∑

p xi−1
p·v may be less than one, it may be

that no path ending in some vertexv will be rounded to 1 at
some iteration. This corresponds to deciding that the vertex
is at a higher level.

After the k iterations, only variables corresponding to
lengthk +1 paths remain. The optimal solution to this LP is
integral and can be found greedily, just as the last layer was
found greedily in the 2-windmill algorithm.

This rounding method is a generalization of the round-
ing presented in the previous section fork = 2 and prede-
termined level assignments. The first iteration (i = 1) is
trivial for predetermined levels, since all first-level vertices
have only a single choice of ancestor (the unique level 0 ver-
tex). The greedy assignment of the third level vertices in
the second stage of rounding in the previous section exactly
re-solves the linear program after rounding the second level
nodes.

Note that the rounding step (1) itself preserves the
expected value of the solution, but it might make the optimal
solution infeasible. We show that after each step of rounding

there is still a reasonably good feasible solution. To show
this, we present an explicit solution to theith modified linear
program.

THEOREM 6.1. The ith rounding iteration decreases the
optimum LP value by a factor of no worse than1/8(k+1−i).

Proof. At the ith iteration, consider the following solution
x(i) to the modified LP:

• For each variablexp·q with |p| = i, if x̃p = 0, set

x
(i)
p·q ← 0 (this is mandated by the LP). If̃xp = 1, set

(6.8) x
(i)
p·q ←

xi−1
p·q

4(k + 1− i)xi−1
p

.

• For each nodev: if
∑

p x
(i)
p·v > 1, then set all variables

in whichv appears to zero (i.e. for allp, q setx(i)
p·v·q ←

0). We say that the nodeoverflowedand so all the paths
it appeared on werepurged.

The solution presented satisfies the LP constraints (since
we purge any variables that violate the constraints). We
claim that its value is at least 1

8(k+1−i) of the value before
the iteration. The optimum LP value can only be better. A
complete proof can be found in [Sre00]; here we provide an
outline.

Consider a particular pathp · q, where|p| = i. The
rounding scheme above rounds the prefixp to 1 with some
probabilityα, and to 0 otherwise (also zeroing the path), but
it also scales the pathp · q by 1/4(k + 1 − i)α if it does
not zero it, so theexpected valueof xp·q after rounding is
just xp·q/4(k + 1 − i). If that path has weightwp·q, we
would hope that it continues to contribute a1/4(k + 1 − i)
fraction of its contribution to the starting solution. This
will be trueunlessit is purged—that is, participates in some
infeasible constraint. This happens if one of the vertices ofq
ends up with too large an “incoming value” on the fractional
paths ending in it. To bound the probability of this event,
conditioned on roundingxp to one, we analyze the total
incoming path-values into vertices ofq. If this value is less
than one, then surely no vertex inq overflows. We show that
the expected value of this total, conditioned on roundingxp

to one, is less than half, and so with probability at least half
there is no overflow.

To overcome the conditioning on roundingxp, for each
vertexv on q, we partition paths ending inv into those that
sharep as a prefix and those that do not. For those that do
sharep, the LP constraint forp, v guarantees an incoming
value of at mostxi−1

p before scaling, and so1/4(k + 1 − i)
after scaling. For paths not sharingp, the conditioning just
decreases the expected contribution, and the LP constraint
for ε, v guarantees an expected total incoming value of at
most1/4(k + 1− i) (after the scaling). Summing these two

contributions over allk+1−i vertices ofq yields an expected
total incoming value of one half.

It follows by induction that the value of the (integer
valued) LP optimum in the final step is no worse than1/8kk!
times the original LP value. We therefore solve the windmill
forest problem with an approximation ratio of1

8kk!
and the

hypertree problem with a ratio of 1
8kk!(k+1)!

.
In the proof, a feasible (but not necessarily optimal) LP

solution is explicitly constructed at each step. Thus, it is not
technically necessary to re-solve the LP at each step—one
can achieve the approximation ratio after just a single LP
solution. Furthermore, this explicitly re-solution does not
directly depend on the weightswp, but only on the value of
the fractional solution. Of course, using the weights (as we
did in the previous section fork = 2) and re-solving the LP
at each step seems likely to yield a better solution in practice.

7 Conclusions

We present an interesting graph algorithmic problem, finding
maximum hypertrees, that has important applications in
unsupervised machine learning. We show how maximal
hypertrees can be approximated by windmill-farms. We
analyze the hardness of finding maximal windmill-farms,
and present an approximation algorithm that achieves a
constant approximation ratio for constant tree-width.

As was argued above, the exponential dependence of
our algorithm’s running time on the target tree-widthk is
unavoidable and non-problematic. However, an important
open question is whether, given that we are willing to
spend this much time, we can achieve an approximation
factor that is a constantindependentof k. We believe
that the analysis of our algorithm’s performance can be
improved, but that the explicit rounding method will have an
undesirable dependence on the tree-width. A direct analysis
of the value of the iterative linear programs might yield a
qualitatively better approximation ratio.

An interesting question about the structure of the wind-
mill polytope arises from the discussion at the end of section
6.2. Is the integrality gap that can be guaranteed for any spe-
cific objective function smaller than the integrality gap that
can be guaranteed independent of the weights?

8 Acknowledgments

Work on this problem originated in a class taught by Tommi
Jaakkola. We are grateful to him for introducing us to
Markov networks and for many helpful discussions on the
topic.

References

[BFMY83] Catriel Beery, Ronald Fagin, David Maier, and Mihalis
Yannakakis. On the desirability of acyclic database schemes.
J of the ACM, 30(3):479–513, 1983.

[Bod93] Hans L. Bodlaender. A tourist guide through treewidth.
Acta Cybernetica, 11:1–21, 1193.

[Bod96] Hans L. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth.SIAM Journal on
Computing, 25:1305–1317, 1996.

[Bod97] Hans L. Bodlaender. Treewidth: Algorithmic techniques
and results. In Igor Privara and Peter Ruzicka, editors,
Proceedings 22nd International Symposium on Mathematical
Foundations of Computer Science, volume 1295 ofLecture
Notes in Computer Science, pages 29–36, 1997.

[CL68] C. K. Chow and C. N. Liu. Approximating discrete proba-
bility distributions with dependence trees.IEEE Transactions
on Information Theory, IT-14(3):462–467, 1968.

[Das99] Sanjoy Dasgupta. Learning polytrees. InUncertainty in
Artificial Intelligence, 1999.

[DL93] P. Dagum and M. Luby. Approximating probabilistic
inference in Bayesian belief networks is NP-hard.Artificial
Intelligence, 60(1):141–153, March 1993.

[DL97] Paul Dagum and Michael Luby. An optimal approxima-
tion algorithm for Bayesian inference.Artificial Intelligence,
93(1–2):1–27, 1997.

[Gra79] M. H. Graham. On the universal relation. Technical
report, University of Toronto, 1979.

[Jai98] K. Jain. A factor 2 approximation algorithm for the
generalized steiner network problem. InProceedings of
the 39th Annual Symposium on Foundations of Computer
Science, pages 448–457, Los Alamitos, CA, November8–11
1998. IEEE Computer Society.

[Mal91] Francesco M. Malvestuto. Approximating discrete prob-
ability distributions with decomposable models.IEEE Trans-
actions on systems, Man and Cybernetics, 21(5):1287–1294,
1991.

[MP99] Marina Meila-Predoviciu. Learning with Mixtures of
Trees. PhD thesis, Massachusetts Institute of Technology,
1999.

[Pea97] Judea Pearl.Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann Publishers, revised second printing
edition, 1997.

[SG97] Kirill Shoikhet and Dan Geiger. A practical algorithm
for finding optimal triangulations. InProceedings of the
Fourteenth National Conference on Artificial Intelligence,
pages 185–190, 1997.

[Sre00] Nathan Srebro. Maximum likelihood Markov networks:
An algorithmic approach. Master’s thesis, Massachusetts
Institute of Technology, 2000.

[STA97] David B. Shmoys,́Eva Tardos, and Karen Aardal. Ap-
proximation algorithms for facility location problems (ex-
tended abstract). InProceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computing, pages 265–274,
El Paso, Texas, 4–6 May 1997.

