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Abstract will be defined formally later; for now we note that only trees

Markov networks are a common class of graphical models udeaive treewidth one, while a small treewidth means that the
in machine learning. Such models use an undirected graprg@ph is quite like a tree.
n

capture dependency information among random variables in a j L . . e
probability distribution. Once one has chosen to use a Markoy [N S0me applications, the graphical model is specified in
network model, one aims to choose the model that “best explaiagtvance. But in others, one begins with some observations
tmhgk((jaaé?etdt}g:ic?r?;;)beoeur; observed —this model can then be usesh? tries to find the graphical model that best fits these
We show that the problem of learning a maximum likelihoogPServations.  Chow and Liu [CL68] show how the best
Markov network given certain observed data can be reducedtr@ewidth-1model (that is, tree) for the data can be found
the problem of identifying a maximum weight low-treewidth grapyia a maximum spanning tree computation on a graph whose
under a given input weight function. We give the first constant . .
factor approximation algorithm for this problem. More preciselyV€ights are determined by the values of the observed data.

for any fixed treewidth objectivi, we find a treewidthe graph with  Sometimes, however, a higher treewidth is needed to fit the
an f (k) fraction of the maximum possible weight of any treewidthystg well
k graph. ’

1.2 Our Results. We aim to learn, given some observed

) o _data, the bestreewidth%# model of the data. We show

In this paper, we study a generalization of the maximuRat this problem reduces to a pure graph problem: given a
spanning tree problem: finding a maximum weight subgrapBndidate graph with weights on edges, and also on larger
of bounded treewidth. This problem is motivated by &iques of size up tok + 1, find the maximum weight
machine learning application: learning maximum-likelihoogeewidth4 subgraph of the input graph. We show that
graphical models to fit data from an empirically samplegy . ~ 1, this problem is NP-complete; even when only
probability distribution. We show how our (NP-completedqges (and not larger cliques) are weighted. We develop
graph problem arises naturally from this application. Weysroximation algorithms for it. For an-vertex graph with
then give the first approximation algorithms for the probler@oa| width &, in time n®*), we find a treewidtte graph

achieving a polynomial-time constant-factor approximau%maining atleast afi(k) fraction of the maximum possible
for any fixed treewidth objective. weight.

] ] The running time of our algorithm is unsurprising, since
1.1 The Problem.One of the important areas of machinghe jnput problem size i8°*): a weight is specified for

learning is the development and usepodbabilistic models every candidate clique of size up to(and in problems de-
for classification and prediction. One popular probabilistig,ed from machine learning, all these weights are usually
model [Pead7] is the class Markov networkswhich use nonzero). It is not clear whether the dependence of our ap-
a graph to represent dependencies among the variablegy§kimation factor on the goal treewidthis necessary, but
the probabilistic model.  Given this graph, a particulgfe do in any case get a (weak) constant factor approxima-
probability distribution on the variables can be succinctfyy, for every fixedk, which is the case that is dealt with in
represented by specifying the (marginal) joint probabilifyactice.
distribution over each set of variables that forms a clique. To the best of our knowledge, this is the first purely com-
In order to avoid over-fitting, it is important that theyinatorial formulation of the learning problem for general
graph have no large cliques. At the same time, for efficigpbewidth. It provides, for the first time, hardness results and
use of the model, the graph needs to be triangulated. Cq§fsvable approximation algorithms for the learning problem.
bining these two objectives yields the actual requiremefi;e approximation algorithm is of a “global” nature, as op-
that the underlying graph have smattewidth Treewidth nosed to local search heuristics which have been suggested
before [Mal91].
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any treewidthk graph places at least a constant fraction afgorithms.
its weight in somek-windmill, and thus settle for approx-  One of the challenges of unsupervised learning, giver
imating a maximum weighk-windmill. To find this wind- a sample of observations, is to determine the distributior
mill, we develop a linear-programming-based approximatitew from which the samples were drawn. The conjectured
algorithm. The linear program bears some resemblancealistribution can be used to make predictions about future o
those in recent algorithms féacility location[STA97]. Our partially observed data. Often, each observed data point i
rounding scheme is quite different, however, and has an @xpressed as a vector of variables. A common approac
teresting “iterative” approach similar to Jain’s recent algie probabilistic machine learning is to assume that eact
rithm for network design [Jai98]: after solving the LP, weata vector is drawn independently from some unknowr
randomly roundsomeof the fractional variables; we thea- probability distribution over possible vector values. One
solvethe linear program to make it feasible again before vileen aims to identify the probability distribution that best
proceed to round other variables. explains the observed data. The notion of “best explains’
can be made concrete in many ways, but a common one is't
1.3 Related Work. The problem of finding a maximumchoose the model that maximizes the likelihood (probability)
likelihood Markov network of bounded tree-width has beesf generating the observed data. This model is called the
investigated before (cf. [Pea97]). Malvestuto [Mal91] disnaximum-likelihood model.
cussed the connection between this problem and maximal In learning, one always faces a tradeoff between finding
acyclic hypergraphs (which we célypertreediere) and sug- a model that fits the observed data and finding a model the
gested a local search heuristic using them. generalizes well: the best model of the data is one whict
Several other extensions to the work of Chow and Lpredicts that data and only that data, but is not usually usefu
[CL68] for tree-shaped Markov networks have recently beéoar dealing with new data. To avomverfittingthe data, one
proposed. Meila [MP99] suggested modeling distributioean decide in advance on a limited class of possible model
as mixtures of tree-shaped Markov networks. Dasgugaobability distributions) and choose the modieim that
[Das99] suggested polytree Bayesian networks (trees withssthat best fits the observed data. The model class shoul
oriented edges). be complex enough to allow a decent approximation of the
There is also work odirectedgraphical models known true distribution, yet not so complex as to cause overfitting.
as Bayes Nets Dagum and Luby focus on the problenThe complexity of a class is often quantified by the number
of, given a specific graphical model, learning the appropdf free parameters it allows.
ate setting of the joint probability distributions. They show For example, one very simple model class is one tha
that even achieving good approximations for this probleassumes that the variables in the observed vectoindes
is NP-hard in the general case [DL93], but also give apendentmeaning that it is sufficient to develop a model for
proximation algorithms that work well on a large class @&ach variable separately and then take the product distribt
instances [DL97]. In contrast, as we will see below, learnitign. Such a strong assumption, however, might not allow
the distribution setting for a Markov network is trivial. good approximation when the true distribution contains im-
Most recent work on treewidth has been concerned wjtbrtant dependencies.
showing that some input gragtassmall treewidth, and on Thus, models are explored which attempt to capture ¢
finding an appropriate tree decomposition [SG97, Bod9éw important dependencies, yet are limited enough to avoic
Bod96]. Here, we focus on a different problem. We woulaverfitting. Markov networksare a way to express such
like to find a graph of treewidth at mostthat captures thea dependency structure. In the discussion bel&wis a
greatest weight. We do not expect to be able to include @lhdom vector, and is a possible sample value faf.
the candidate edges, but rather aim to maximize what can
be included. While finding a tree-decomposition of a giveDEFINITION 2.1. We writeA | B | C for variable sets4,
graph might be viewed as a covering problem (finding a low, and C, if the variables inA are independent of those in
treewidth graph containing the target graph), our probleB conditioned oranyvalues of the variables i@
is a sub-graph problem—finding a maximal small-treewidth

graph inside a given candidate graph. DEFINITION 2.2. (MARKOV NETWORK) A random vector
Xy, indexed by vertex sét, is a Markov networkover
2 Maximum-Likelihood Dependency Graphs an undirected graphz (V) iff each random variableX,,,

In this section we introduce and motivate our problem. To §@nditioned on its neighbors, is independent of all other
so we outline some concepts from machine learning that gfements oy :

not critical to understanding the results in this paper. This

section provides the motivation for studying our problerﬁ?-l) (Vv eV)

but can be skipped without loss of understanding of the X, | {X, | u # v, (u,v) &€ G} | {Xu|(v,u) € G}



It follows that if C separatesA and B in G, then for the factor ¢;, for any cliqueh depends only on the empirical
corresponding sets of random variabl&s, | Xpz|Xc. marginal distributionP, over the cligue, and is completely
Every distribution is a Markov network over the comeblivious to the structure grapHi, other than the fact that it
plete graph: the independence requirement is satisfied wamtainsh as a clique.
uously. As a more interesting example, any finite-length In this work, we investigate the situation in which
Markov chain is a Markov network whose underlying grapthe graph is unspecified, but required to be triangulated
is a path: each variable is directly dependent on only its pesxd with bounded clique size. We would like to find the
decessor and successor. Note thaf ifs a Markov network maximum likelihood Markov network over any such graph.
over@, itis also a Markov network over any supergraph dfthe core problem is finding the maximum likelihood graph
G: adding edges to the graph removes independence dtself (i.e. the graph over which the maximum likelihood
straints and thus allows for a more general class of distarkov network is achieved), since the maximum likelihood
butions. The sparser a graph, the more limited the clasdadtribution would then be specified by (2.2). We can

Markov networks it models. associate a maximum likelihood with every candidate graph
Of particular interest are Markov networks over triang@=—that is, the maximum, over all Markov networks over
lated graphs. G, of the probability of observing the data under the model.

. . . .. .. We would like to find the triangulated, bounded clique-size
DEFINITION 2.3. A graph is said to beariangulatediff it raphG with the largest maximum-likelihood.

doe_s not contain any minimal cycles of more than three For any candidate triangulated gragh (2.2) specifies
vertices. the maximum likelihood Markov network over it, and thus
Over a triangulated grapi, all marginal distributions, and!€ts us analyze the maximum likelihodd &) that G' can
therefore all conditional distributions, can be determin@ghieve on the samplese’}/_,. The probability the net
from the marginal distributions over each maximal cliqugenerates the data is just the product of the probabilities that
in G. Given a stored representation of each of these clighi@enerates each sample point, so

marginals, one can compute all other marginals and condi- .
tional distributions in linear time—that is, linear in the size 108 L(G) = log ] H Pn(@h)
of the tables needed to hold the clique marginals, and hence t neCliquec)
exponential in the clique sizes. The number of free param- - Z Z log ¢ (")

eters for the Markov network is also roughly exponential
in the clique sizes. It is thus desirable to bound the clique

sizes, both to ensure feasible storage and computation-t{Renow plug in the optimum clique factors from (2.3) based
requirements, and to limit the model complexity and avoy}, ihe empirical distribution:

reCliquec) ¢

overfitting.

One possible scenario is that the graplis specified in _ T P (z)]o r
advance (e.g. from prior knowledge about the relationships X C% . ; w(2n) log dn(zh)
between variables), and we limit ourselves to the class of i
Markov networks overG. In such a scenario, and & (2.4) =T Z Ep [log én(Xp)]
is triangulated, the maximum likelihood Markov network neClique)

X over G can be explicitly calculated from the empirical . _ _
distribution P (that is, the probability distribution in whichFor €ach candidate clique, the termg [¢5(X5)] in the
each of theT’ observed sample points is given probabilityum depends only on the empirical marginal o¥erand

1/T, and all other sample points are given probability 0): N0t on the rest ofz. Consider a weight function over
candidate cliques, such thath) = E [log ¢5,(X3)]. This
(2.2) Pg(z) = H bn(xn) weight function can be calculated based on the empirical
neCliquec) distribution alone, using the explicit recursion:

where theclique factorsp;, are functions of the outcomes of w(h) = Ep [pn(Xn)]

random variables indexed by the cliqug = {z,|v € h}, p(xh)
and are given by the following recursion: =Ep m
Pu(xn) =Ej, |[logPzp| — Y Ep|l X
(2.3) on(zp) = =—2—. =Ep |log Frp Z p [log dn/ (Xp)]
(@) [ cn on (@n) { } h'Ch
The product in (2.2) and the recursion (2.3) are over all, H@:5) = —H(P(h) = Y w(h)

necessarily maximal, cliques. It is important to note that the h'Ch



whereH (P(h)) is the entropy of the empirical marginal. distribution that yields weights proportional to this set of

Note that a single vertex always forms a clique, and geeights [Sre00]. Thus the problem of finding a graph of
will always appear in the sum of (2.4). The contributiomaximum weight over a non-negative weight function can be
of these singleton cliques is exactly L((), the log max- reduced to finding a maximum likelihood Markov network
imum likelihood of the data over a fully independent modefipor empirical data. This reduction is weak, in the sense
where there are no edges, and all variables are independéit. the sample size needed to produce specific weights |
Separating out the singletons, and using our newly definemlynomial in the values of the weights. Still, this is enough

weights, we get: to show the NP-hardness of finding a maximum-likelihood
triangulated Markov network of bounded clique size.
(2.6) log L(G) =log L(0) + T - > w(h)
reCliquea),|h>1 3 Problem definition

Equation (2.6) expresses the maximum likelihood oflg the above section, we were able to reduce the maximum
given candidate graph as a “gain” over a simple baselifielihood Markov network problem to the following: given
model, in which all variables are independent. The “gain” & Weight for each candidate clique of size at mbst 1,

a simple sum of weights (derived from the empirical data) 8fd a triangulated graph with cliques of size at mbst 1

all non-trivial cliques that appear in the graph. Maximizing!at maximizes the summed weight of its cliques. As will
the maximum-likelihood is thus equivalent to maximizin§® defined below, the constraints on the graph specify the
this “gain”, so we can formulate the problem of finding thé Should havetreewidth at mostk. We will work with
maximum likelihood Markov network as one of finding & hypergraph view of tree width, which is similar to that
triangulated graph of bounded clique size that maximizdi§cussed by Bodlaender [Bod93], and will search for a
the total (summed) weight of its (not only maximal) cliquedlyPertree of width at most that maximizes the weight of
Note that the singleton weights are defined for the recursié}¢ hyperedges it covers.

(2.5) but are not summed in calculating the weight of a graph.

Note that the log maximum likelihood is a negativé-1 Preliminaries: Graph and Hypergraphs. A graph
measure. The log maximum likelihood of the independefit V) is a collection of unordered pairsdges of thevertex
model, log L(®), is a negative quantity, and the gain is po§€tV: G(V) C (). A hypergraphH (V') is a collection of
itive, which brings the log maximum likelinood @ closer Subsets (edges, or sometimes explicityjper-edgeof the
to, but still usually far away from, zero. Log likelihood&ertex set’: H(V) C 2V. If i’ C h € H then the edge’
are usually very large magnitude negative numbers, whsgoveredby H. We slightly abuse the set-theory notation
magnitude mostly reflects, and is bounded from above Bjid denote?’ € H even if ' is only covered byH. A
the inherent entropy of the distribution being sampled. BRypergraph (or graph)l” is covered byt iff Vjyc b’ € H
cause of this, it is common to analyze the improvement @/l €dges inH’ are covered by, i.e. are a subset of an
log-likelihood over some baseline model. edge ofH); if so we write H' C H.

The approximation results presented in this paper are Another way of viewing this notion of a hypergraph is
also of this nature. The weight of the graghis the gain requiring that a hypergraph include all subsets of its edges.
in maximume-log-likelihood, so by approximating the weight
of the graph, we approximate the gain in maximum-log-2 Acyclic Hypergraphs and Treewidth. Recall that an
likelihood. acyclic graph can be defined recursively as an empty grapf

Although the weight of a triangulated graph, bein@ragraph containing leaf, i.e. a vertex incident on a single
the gain in log maximum likelihood, will always be non€dge, such thatremoving the leafyields an acyclic graph. W
negative, the same cannot be said about individual weig¥d! use a similar definition for acyclic hypergraphs.

The existence of negative weights is a potential pit-ffﬂ

. . . . . . EFINITION 3.1. A vertexv of a hypergraphH (V) is

in many combinatorial algorithms, including the ones pre- P . " . :

sented here. However, the weights defined above (ignoan?@%ed aleaf if it appears only in a single maximal hyper
: ' eh € H. The hyperedge is called thetwig of v.

the singleton weights) do have the following property which
enables our algorithms to work properly: DEFINITION 3.2. A hypergraphH (V') is said to beacyclic

DEFINITION 2.4. (MONOTONEWEIGHTS) A weight func- if it is empty, or if it contains a leaf such that the induced
tionw : {h C V | |h] < d} — R is said to bemono- hypergraphH (V' — v) is acyclic.

1 /
tzo:neﬁ f(;r}(?;llr/w)y | < dandhy C ha 3 e, wh) 20 pp acyclic hypergraph is also referred to afiyperforest
h'Chs )

The implied iterative reduction process is calle@Gamham
It is also interesting to note that for every non-negativeduction of the hyperforest. The twig of a vertex of a
weighting of potential cliques, there exists an empirichiperforest is taken to mean the twig of the vertex when



it is reduced. Note that although the twig is a maxim&ecall (from Definition 2.4) that a hyper-weight function
hyperedge at the time of reduction, it might not be maximassigning weights to edges of size updtés monotoneif,

in the hyperforest itself. If we consider the underlyinfpr everyhy, C hy,|h1| < d, the weight of the hypergraph
triangulated graph of “normal” (2-endpoint) edges definadth maximal edgéer; is less than or equal to the weight of
by the hyperforest, a Graham ordering is an ordering time hypergraph with maximal edge.

which, as each vertex is eliminated, its neighbors form a We are now ready to state the maximal hypertree prob-
clique. lem:

Given as inputs:
DEFINITION 3.3. Thewidth of a hyperforest? (V) is the

size of its largest edge, minus oneax,cy |h| — 1. e Aninteger treewidtfk.
Thus. the width of a standard tree is 1 e A vertex setlVV and monotone weight function
L . V .
A hyperforest which is maximal among hyperforests of w: (c4yq) — BT on hyperedges of size up o
the same width is said to be lypertree Since we are and includingk + 1.

concerr_led with maximum structures, we will be interested Find a hypertreed (V) of treewidth at most that
mostly in hypertrees.

maximizesw(H).

DEFINITION 3.4. Atree decompositionf a graphG (V) is Note that such a monotone weight function is also
a covering hyperforesti (V') O G(V). monotone on hyperforests of width at mast Since every
hyperforest has a covering hypertree, the maximal hyperfor-
DEFINITION 3.5. Thetreewidthof a graph is the width of est can always be taken to be a hypertree. So this problem
the narrowest hyperforest covering it. could have also been stated as finding a maximal hyperforest.

Whenk = 1, the maximum hypertree problem is simpl
The following theorem establishes the well-known CORE & maximum spanning tree pro?)/lpem P PY

nection between hyperforests and triangulated graphs:

DEFINITION 3.6. The clique-hypergraph of a grapty is 4 Windmills . - .
the hypergraph in which the hyperedges are the cliques@gneral graphs of small treewidth are difficult to work with.
G. Therefore, we introduce a simpler graph structure that can be

used to capture much of the weight in hypertrees.T@t)
THEOREM3.1. A hypergraph is acyclic if and only if it isbe a rooted tree on the verticks with rootr and depth at
a cligue hypergraph of some triangulated graph. A graph isostk (i.e. the longest path beginningahask edges). The
triangulated if and only if its clique hypergraph is acyclic. treeT' (V') defines the following hierarchy of verticesis at
) ~level zero. For any other vertax € V, consider the path
COROLLARY 3.1. For a graph G, the treewidth ofG' is  from 1 to v. Vertexw is said to be on théevel equal to the
equal to the minimum over triangulations’ of G, of the edge-length of the path. Nodes on the path froto v are

maximal clique size iG, minus one: its ancestors
(3.7) width(G) = _min  max |CliqueG’)| -1 DEFINITION 4.1. A k-windmill based on a rooted tree
trlangc'oa

T (V) is a hypertree whose maximal edges are the root-leaf

Many alternative equivalent definitions of hyperforesgaths in7'.
and treewidth appear in the literature. For a survey ag

d . - . .
. _— uch ak-windmill is a hypertree: its Graham reduction
details on the above definitions and results, see [Sre00]. follows the (standard) Graham reduction of leaves of the tree

. T. 1-windmills are star graphs.
3.3 The Maximal Hypertree Problem. As a consequence A k-windmill-farm is a hypergraph that is a disjoint

of Theorem 3.1, we can discuss weights of hyperforests“ect.on of windmills. Since each windmill is a hvpertree
instead of triangulated graphs with weights on cliques. Whén . dl 1of wini Ih ' 'f A Wi . yp '
working with standard graphs, a weight function assignsae\le mifi-farm 1S a hypertorest.

weight to each potential edge, i.e. pair of vertices, aRf,eorem4.1. (WINDMILL COVER THEOREM) For any
the weight of the graph is the sum of the weights of ii§perforestr (V') of width & and non-negative weight func-

edges. However, for our applications, it is essential to assighh (.), there exists a-windmill-farm F(V') such that
weights also to larger candidate hyperedges. A hyper-weighty) < (k + 1)lw(F).

function assigns a weight to candidate hyperedge of vertices
of arbitrary size, and the weight of a hypergraph is the suPnoof. We use a labelling scheme followed by a random
of the weights of edgesoveredoy it: w(H) = ), . ; w(h). selection scheme in which each hyperedge “survives” to be



included in the windmill with probability at leasdt/(k +1)!. atleastw/(k + 1)!.
This means the total expected surviving weight is at least
w(F)/(k+ 1)!, as desired. We then show that the surviving In fact, windmills can achieve the/d! approximation
edges form a windmill. “simultaneously” for every edge of sizke

The scheme is based on (& + 1)-coloring of the
vertices, such that no two vertices in the same hyperedggroLLARY 4.1. For any hyperforestl (V') of width, let
have the same color. The existence of such a coloring Ganbe the total weight of hyperedges of sizéso that the
be proven by induction on the Graham reduction of thetal weight of the hypertree i§" w,). Then there exists a
hyperforest: LetH (V) be a hyperforest with leaf, and k-windmill-farm contained irf of weight at leas}_ wg/d!
recursively colord(V — v). The leafv has at most:
neighbors (other members of its unique maximal edge) poof. We perform the above coloring and random selection,
H(V —wv), leaving a color available for. This inductive pyt include an edge i, if its colors appear in the same
proof specifies an ordering in which the vertices get coloregtder inr, as a prefix or as an arbitrary subsequence. Thel
This is the reverse of the order in which vertices wetge probability that we include an edgedfertices isl /d!.
Graham reduced. The order of coloring imposes on eaghe parent of; of color (i + 1) is selected to be the vertex
hyperedge a (possibly partial) permutation of the colgg$,'s twig of color 7 (;), for the maximumj < 4, for which
used—namely, the order in which those colors were appligf twig includes such a vertex.
to vertices of the hyperedge. Note that under this selection criteriodt,, does not

From this ordering we construct our windmill farmeoyer any additional edges not explicitly selected, and sc
Choose a random permutation (ordering)of the colors. g [y (F,)] = 3 wy/d! exactly.

We define a windmill farmZ;, to contain all hyperedges

whose color permutation (ordering) is consistent witHor Recall that we are actually interested in weight functions
hyperedges witht: + 1 vertices, consistent simply meangat are not necessarily non-negative, but rather are monc

equal; for a hyperedge with fewer vertices, consistent meggse  Even for such weight functions,14(k + 1)! fraction
that the colors thado appear in the hyperedge form a prefixa, still be achieved:

of the permutationr.

The permutationr of colors can be interpreted as g o | ary 4.2. For any hyperforest (V) of widthk and
mapping between the colors and thet- 1 levels of the onqt0ne weight function(-), there exists a-windmill-
windmill-farm F.; each vertex now goes to the level of it$arm F(V) such thatw(H) < (k + 1)lw(F).
color. Each vertex of the first color(1) is a root of a -
windmill. Each vertex of colorr(i+1) is at leveli, with its
parent being the vertex coloredq) in v's twig (the unique
maximal hyperedge containing when v was removed).
Note that if the twig does not have a vertex of coid)
then no hyperedge containingis in F;.: if v € h € Fp,
then the partial color permutation imposed/ois at least an
i + 1-prefix of 7 and so must have a vertexcolored(7)

Proof. Perform the same selection process as in Theoren
4.1, but analyze the weight of the resulting windmill farm
differently. Instead of considering the weights of individual
edges, consider the weightv) gained when un-reducing
That is, the difference in weight of the hyperforests before
and after reducing. Since every edge will be “gained” at
exactly one reductiony |, g(v) = w(H). Furthermore, the

Whlch was colored before. Bu_t if u was Coloreq befqr ©, gain is a difference in weight between two hyperforests, anc
then it was reduced after and it should appear ivis twig. S0 non-negative

To show thatF’, is indeed a windmill-farm over this tree To analyze the expected weight ., start from an

structurg, it is enough to show th‘?‘t _for every h € Fy of empty hypergraph and add vertices according to their col
colorm(i+1), the vertex of color (i) in his the parent ob. - (everse reduction) order, keeping track of the weight
Smce the permutat!on df agrees withr, a vertexu OT color of the sub-windmill-farm induced by’ on vertices colored
.7T(Z), eX|§ts Inh and.ls'colored before. The vertex: is thus so far. Each colored vertex adds some non-negative gair
invs thg,.and .SO I2'S pare'nt. i If the color permutation of a vertex’s twig is a prefix of
The windmill-farm £ might cover additional edges tha{he gained weight is exactiy(v). Since this happens with

were not explicitly selected by the scheme above, but si i | O EIFE]> w(F 0
these have non-negative weight, the weight is at Ieastrhi@babl ity atleast/(k + 1)\, B [F] 2 w(F)/(k+ 1)\

weight of the edges selected. A hyperedge of sizis

selected to be i if it is consistent with the permutation;a maniemV:/JIrI:w%Z;Sﬁtwir?gnam)f(g?ritg: dangznttrTénzafgch\ln?g;%It
this happens with probabilityk + 1 — 7)1/(k + 1)! > 9

1/(k + 1)!. Since the weight of edges is non-negativg, trtl(e)z infer that the maximum weight windmill farm, which is a

expected value contributed by any edge of weight F; is :zgg;::zgsn 'S competiive refative to the maximum weight



4.1 Hardness Results. We present hardness results on e A variable z,, ,, for every first-level nodev; and
windmill approximation. It is important to note that these  second-level nodes, which will be set to 1 ifu, is a
do not extend to showing the hardness of approximation child of v;.

of maximal hypertrees. While we can show that finding

a maximum hypertree, as well as a maximum likelihood ® A variable z,, ., ., for every triplet of first-, second-
Markov network’ is NP_hard’ our ana'ysis does not even and third-level nOdeS, reSpeCtively, which will be set to
preclude the possibility of a PTAS. However, we conjecture 1 if v3 belongs tav; andto v, (that is, thats is a child
that our hardness results do extend to the hypertree problem. of v2 which is a child ofv, ).

THEOREM4.2. For fixedk > 1, the maximum weight- The integer program is then:

windmill problem (and even the maximewindmill prob-

lem for unit weights) is max-SNP hard. max Z Loy ,v2,03 Wor,v9,03
v1,V2,03
Proof. A reduction from max-2SAT (Vo) vawz = 1
A similar reduction can be used to show NP-hardness of -
the maximal hypertree problem for fixédd> 1 (even with (Vos) Z Toyvawg = 1
unit weights, and weights only on edges of size 2). However, V1,02
this reduction does not show hardness of approximation. (V01,v2,03)  Toyaws S Togs
T 4.3. For k part of the input, and in particul (For,0205) - Foimany 20
HEOREM4.3. For k part of the input, and in particular
p p p (VUl, UZ) Ty ,v9 Z 0

for somek = Q(n), no polynomial time algorithm can find
an n'—¢ approximation to the maximur-windmill unless
P=NP. . . . .
The first two equalities specify that each vertex is only on
Proof. A reduction from independent set, where each vert@R€ path from the root, and the first inequality specifies that
is converted to a path, and paths cross (so cannot be inth&annot be on path;, vy, v3 unlessu; is descended from
same windmill) if the corresponding vertices are neighbor?i.l_hWe will refer to this as requiring consistency of the
paths.
5 An Approximation Algorithm for 2-Windmills To get an approximation to the integer program, we first
. . L . solve the relaxed linear program given by the above equa-
In this section, we present some of our basic ideas in an algo- . . :
. : . : . : ons, and then perform the randomized rounding described
rithm for the 2-windmill problem with non-negative weights,

Recall that a 2-windmill is a tree with a root, a child IayePelOW'

and a grandchild layer. We assume that there are Weiggtg Rounding. We now show how to round a fractional

qnly on triplets (not pairs or smgle}ons), but t@s assumgélution, giving up a factor of less than 1.6 in the objective
tion can be made w.l.o.g. by adding an additional vert?&<

for every paif| ) and settings( ) = nction value. Our rounding uses the natural probability
Hor,vs y paiftvy, v2 9olvL, V2, Uurex) = gistribution arising from the LP constraint thet, v, v, =

w(v1,v2) While all other weights involving the new vertexl_ this suggests that, can choose a parent vertex by
Uy, I€ SELTO ZE8T0. selectingv; with probability z,, .,,. However, this does not

. Lo show how to choose parents for the third level vertices. We
5.1 Guessing Levelskor simplicity, we reduce to the case . . )
ill, however, show that a simple two-step process works:

where the level of each vertex (root, child, or grandchil :

g . st we round the second-level vertices, and then we let

is fixed. We do so by assigning each vertex to a random . )
. . each third-level vertex make a greedy choice based on the

level (probability 1/3 for each). Any triple that appears . us roundin

in order vy, v9,v3 in the optimal solutions will have its 3p INg. . L

. . . . o 3 More precisely, the rounding to an IP solutidfrom an

vertices given the optimal layers with probability/3)* = LP solutionz will be performed in two steps:

1/27. Thus in expectation at leasf27 of the weight of the P ps:

optimum solution will obey the level assignment, so there 4 For eachy,, assign ong,, ., = 1 at random according

will be a solution that obeys the level assignment and has tg the distribution given b¥., +,- The rest will receive

1/27 of the optimum weight. value zero.

5.2 An Integer Program. Given the levels, we specify e For eachvs, assign onet,, ., ., = 1 with the maxi-
an integer linear program corresponding to the maximum 2- mumMw,, ., ., among thosév,, v2) for whichz,,, .., =
windmill problem. The variables in the IP are as follows: 1. The rest will receive value zero.



Note that the above rounding outputs a feasible IP The farm we found thus has an expected weight of at
solution. To analyze its value, we will consider each thirdeastl/324 of the weight of the maximal hypertree (a factor
level vertex, and its contribution to the integer solution valuef 1/2 for the rounding gap, 27 for the randomly assigned
separately. levels, and 6 for the gap between a windmill farm and the

hypertree). A more careful analysis can improve the constan
LEMMA 5.1. Consider a set of items such that iténmas to 1/108.
weight w;. Suppose that each iteinbecomes “active”
independently with probability; where> p; < 1. LetW 6 The General Case

be the maximum weight of any active item. Then Now we turn to the algorithm for general treewidth. We
formulate a more general integer program, for any width
EW] = (1/2) Zwipi k, monotone weights, which does not assume that the a:

) ) ) signment to levels is known. Then we give a more genera
Proof. By induction. Assume there are weights ordered onding scheme—one that essentially applies the techniqu
such thatwy > wy > ---wy. Note that with probability of the previous section one layer at a time. Some care mus
po item O becomes active and we dét = wo, while with e taken to re-optimize the LP after each layer is rounded s
probability 1 — po we get the maximum of the “subproblem’iy,5¢ rounding can be applied to the next layer.
involving the remaining items. By induction, the expected
maximum active weight not including item 0 has _value a1 A General Integer Program. Consider a variable,
least(1/2) 3., wipi. Observe also that;, wip; i (@t for each simple path it of length between andk. Setting
worst, since)_p; < 1) a weighted average of items |es§, 1o one corresponds to havipgas a path in a windmill in

thanwy, so has value at mos. It follows that the solution (in particular, the first noder is a root). We
use the notationp| for the length of (number of nodes in)
E[W] = powo + (1 = po)(1/2) Zpiwi a path ang - ¢, or p - v to denote the concatenation of two
i>0 paths, or a path and vertex.
= powo + (1/2) Y paw; — po(1/2) > piw; The weightw, of a path is the gain in weight of adding
i>0 i>0 the last vertex op to the windmill. That is, forp = ¢ - v,
> powo + (1/2) Zpiwi ~ po(1/2)wo wy = Zhgpw(_h,) =2 ncq w(h). Singe the weight function
= is monotone, it follows that the weights of paths are non-
negative.
= (1/2)powo + (1/2) Zpiwi The linear program has a single equation for each sucl
>0 simple pathp - v, 0 < [p| < k. The variablez, (for the

empty path of length 0) appears in the linear program only
for uniformity of structure, but is set to one:

This lemma can be applied to our rounding scheme. Fix
a particular third-level vertexs. Its contribution to the frac-
max Z TpWp
p

as claimed.

tional LP objective value igvl v Tv1,02,03Woy 05,05 NOW
consider the rounding step. Vertexis permitted to choose

parent pair(v, v5), contributing weighto,, ., ., to the ob- (Vp,v) Z Tpgo < Tp
jective, if v, chooses parent;, which happens with prob- q

ability x4, v, > Ty ve0s- ThiS almost fits the framework (Vp) z, > 0
of the lemma with the variables; set tox,, 4, ,. There r. = 1

are two differences but they only help us. First, we may
havex,, », > v, vs05; NOWever, this can only increase the  Both p andgq in the inequality vary over simple paths
odds of choosing a large weight. Second, the variablase of length up tok in the graph, including the empty path.
not independent. However, they are negatively correlat&ince we are only concerned with simple paths of length ug
the failure to choose some pair, v, can onlyincrease theto k+ 1, v € pis not allowed, and the sum is only over paths
chance that we instead choose some other pair. This agdilength at mosk — |p| that are disjoint fromp - v. Note that
only increases the expected contribution above the indepgince only simple paths of length up ko+ 1 have positive
dent case. It follows from the lemma that we expect a coneight, allowing additional variables and equations for non-
tribution of at leasd  wy, vy vs vy vs,05 /2 from vertexvs.  simple or longer paths will not affect the optimal solution.
This analysis holds for all third-level variables, and The key constraint of the LP requires that the total
combining over all of them yields an approximation ratio dfactional quantity of paths that share a prefixnd terminate
1/2 between the rounded solution and the LP solution. in v is less than the fractional quantity of path This is a



stronger constraint than the ones that arise naturally in there is still a reasonably good feasible solution. To show

integerlinear program: this, we present an explicit solution to tH&modified linear
) ) . _ program.
e Forp = ¢, the inequality specifies that every vertex is at
the end of only a single path. THEOREM6.1. The i rounding iteration decreases the

_ _ optimum LP value by a factor of no worse thef8(k+1—1).
e For anyv and |p| > 0, since all variables are non-

negative, and focusing an= ¢, the inequality implies Proof. At the ith iteration, consider the following solution
T, < Tp, requiring the consistency of paths as we dig(*) to the modified LP:
in the 2-windmill case. . ) e -
e For each variabler,,., with [p| = i, if £, = 0, set
The more complex sum over nonempty pathss taken xéﬁ)q — 0 (this is mandated by the LP). i, = 1, set
to further limit the fractional polytope so as to reduce the

integrality gap and aid in rounding. o

; T
6.8 2 — 7

(6:8) P Ykt 1= i)z !

6.2 A Rounding Scheme. Suppose now that we relax

the integrality constraint and find a fractional solution. We | For each node: if Zp xz()i_)v ~ 1, then set all variables

propose to round each level iteratively, in a fashion similar _ _ @)
to the previous section. in which v appears to zero (i.e. for all ¢ setxy.4,.q —
0). We say that the nodaverflowedand so all the paths
e Start with a solutionz® to the LP, and no rounded it appeared on wengurged

variablesz. . - . .
The solution presented satisfies the LP constraints (since

e Fori=1tok: we purge any variables that violate the constraints). We
_ claim that its value is at leagjz+;—; of the value before
1. For each nodev, the LP constrains thatthe jteration. The optimum LP value can only be better. A
»Tpw < 1. So choose a single paghwith  complete proof can be found in [Sre00]; here we provide an
probability %! If this pathp is of lengthi — 1, outline.
setz,., <+ 1. In any case, for all other patfsof Consider a particular patp - ¢, where|p| = i. The
lengthi — 1, setz,,.,, «— 0. rounding scheme above rounds the prefito 1 with some

2. Re-solve the LP, fixing all variables correspondirffoPability, and to 0 otherwise (also zeroing the path), but
to paths of length up toto be constants equal tot alS0 scales the path- ¢ by 1/4(k + 1 — i)« if it does
their rounded values. Takez! to be the solution NOt Zero it, so theexpected valuef z,,., after rounding is
to thisith modified LP. justz,.,/4(k + 1 — i). If that path has weightv,.,, we

would hope that it continues to contributd &4(k + 1 — )
Note that since _ 3! may be less than one, it may béraction of its contribution to the starting solution. This
that no path ending in some vertexwill be rounded to 1 at will be trueunlessit is purged—that is, participates in some
some iteration. This corresponds to deciding that the veriafeasible constraint. This happens if one of the vertices of
is at a higher level. ends up with too large an “incoming value” on the fractional
After the & iterations, only variables corresponding tpaths ending in it. To bound the probability of this event,
lengthk + 1 paths remain. The optimal solution to this LP isonditioned on rounding:, to one, we analyze the total
integral and can be found greedily, just as the last layer wasoming path-values into vertices @f If this value is less
found greedily in the 2-windmill algorithm. than one, then surely no vertexgjroverflows. We show that
This rounding method is a generalization of the rounthe expected value of this total, conditioned on roundipg
ing presented in the previous section for= 2 and prede- to one, is less than half, and so with probability at least half
termined level assignments. The first iteration= 1) is there is no overflow.
trivial for predetermined levels, since all first-level vertices To overcome the conditioning on rounding, for each
have only a single choice of ancestor (the unique level O veertexv on g, we partition paths ending in into those that
tex). The greedy assignment of the third level vertices sharep as a prefix and those that do not. For those that do
the second stage of rounding in the previous section exadtharep, the LP constraint fop, v guarantees an incoming
re-solves the linear program after rounding the second levalue of at mostv;‘,—1 before scaling, and sb/4(k + 1 —4)
nodes. after scaling. For paths not sharipgthe conditioning just
Note that the rounding step (1) itself preserves tliecreases the expected contribution, and the LP constraint
expected value of the solution, but it might make the optimialr ¢, v guarantees an expected total incoming value of at
solution infeasible. We show that after each step of roundingst1/4(k + 1 — ¢) (after the scaling). Summing these two



contributions over alk+1—: vertices ofy yields an expected References
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