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Abstract

A crucial aspect in anti-HIV therapy is choosing the best treatment among the
many available. To this aim studies try to extract information from the HIV virus’
genotype that can be used to computationally predict its in-vitro susceptibility to
the available drugs. This paper combines the generative and discriminative ap-
proaches in a novel model that improves the utilization of the biological structure
of the system. Two aspects are considered. First is the prior distribution of the
data which is a mixture of two Gaussians, representing viruses that are either sus-
ceptible or resistant to the drugs. Second are the strong dependencies between
drugs of the same mechanism. The performance is remarkably improved showing
error rates of up to 38% of the error achieved by previous studies.

1 Introduction

The Acquired Immunodeficiency Syndrome (AIDS) is a fatal disease considered to be the global
epidemic of our time. It is caused by the HIV virus, which directly attacks the cells of the immune
system, until it fails to respond against simple everyday invaders. A major obstacle to anti-HIV
treatment is the high rate at which this virus replicates and mutates. At a lack of appropriate treat-
ment new viral generations become less susceptible to the available drugs. Hence, confronting the
virus with the best available treatment at its earliest stages is crucial.

There exist two test schemes searching for the best treatment. One method is phenotypic testing, in
which a sample of the virus is tested in the lab against each of the existing drugs. These tests measure
the fold-resistance (FR) namely, the change in susceptibility of the virus to the drug relative to the
baseline susceptibility of the wild-type sequence. This method is expensive, and thus not accessible
to large part of the HIV-infected population. An alternative method is genotypic testing in which the
relevant gene of the virus is sequenced, and computational tools are used to predict its susceptibility
to each of the drugs.

Several tools exist that aim to predict phenotypic resistance from genotypic data. Rule based systems
such as those of the Agence Nationale de Recherches sur le Sida [3], Rega Institute [7], HIVVdb
(Stanford University, [5]) and AntiRetroScan (University of Sienna, [8]) typically provide a three-
level prediction, classifying the virus as resistant, susceptible, or intermediate. A different approach
is applied by the Geno2pheno system which uses decision trees, information theoretic analysis and
Support Vector Regression (SVR) to provide full range predictions [2, 1]. A new paper examines five
different statistical learning techniques, namely decision trees, neural networks, SVR, least square
regression and least angle regression for the prediction task [6]. All these methods were found to
have similar performance.



Figure 1: A. The SVR-net Model. The lower nodes of the model represent the observed sequence’s
features, extracted by the SVR. These can also be regarded as noisy measures of the “true” FRs
that are represented by the nodes in the intermediate layer. These nodes are inter-connected with a
full DAG (black edges) to form an N-dimensional Gaussian capturing the cross-resistance between
the drugs. Finally, the root node imposes the overall structure of the sequences that is a mixture of
Gaussians. B. The FR Distribution of Sequences Tested against the Drugsin the NNRTI Class.
The blue dots represent different RT sequences. Each axis represents the log(FR) against one drug.
The dense Gaussian has coordinates lower than 1, thus these are the susceptible sequences. The
wide Gaussian belongs to resistant sequences. The red dots are the centers of the Gaussians learnt
by the SVR-net model.

Whilst these tools use state-of-the-art Machine Learning techniques, the elementary relations in the
data are overlooked. The utilization of the underlying biochemical processes should significantly
improve the prediction success rate.

In this study we design a hierarchical Bayesian model that is based on some basic biochemical
insights. In a cost of slightly increasing the complexity of the model, the predictions are remarkably
improved.

2 The SVR-net Modd

Existing HIV-phenotypic-resistance modeling techniques ignore several biological aspects. The
most important one is the classification of the drugs according to the mechanism of the reaction.
Phenotypic data is available for drugs that belong to one of three classes: Protease Inhibitors (PI),
Nucleoside Reverse Transcriptase Inhibitors (NRTI) and Non-NRTI (NNRTI). Newer drugs exist,
but resistance data is not yet available for them. All these drugs inhibit viral proteins that are crucial
for the virus’ replication. The first class, as implied by its name, inhibits a protein named Protease
while the two other classes inhibit the protein Reverse Transcriptase (RT). The NRTI and NNRTI
classes differ by the location of the binding site of the drug on the RT. Thus, the effects of drugs
within the same class are highly correlated and result in multidrug resistance. Therefore, a unified
model combining the separate predictors within a class would reduce the parameters space size, and
better exploit the information in the available data.

An additional fact that has been reported, but not expressed in the models is the prior distribution of
the available sequences. Beerenwinkel et al. [1] show that the distribution of the FR of each drug is
not uniform rather it is a mixture of two Gaussians. The first Gaussian which has a small variance and
low FR values is associated with sequences that are susceptible to the drugs. The Second Gaussian
having a large variance and high mean FR is associated with viruses that developed resistance to the
drug.

These biological insights are the motivation for the SVR-net model suggested here. The SVR learn-
ers used in previous studies serve here as a preprocessing feature extraction stage, with a Bayesian
network built on top of them to impose the biologically relevant structure. The Bayesian network
(figure 1A) can be interpreted as a generating process of the sequence’s features. The equivalence to



the biological system is problematic, as the biologically-relevant order of things starts from a new
mutated sequence showing a certain level of resistance. Nevertheless, this model is in some sense
equivalent to the evolutionary selection pressure applied on the sequences by the drug. Specifically,
at the low resolution the selection process distinguishes between resistant and susceptible sequences,
each having different probability of overcoming the drug, and becoming the dominant sequence.
The following selection is at a higher resolution, refining the resistance (and the probability of the
sequence to dominate) according to specific features of the sequence.

Reading from the model, there are two classes of sequences, susceptible and resistant. First, the
sequence’s class is chosen at random from a Multinomial distribution, P(M). The particular sus-
ceptibilities per drug in the particular group of drugs is jointly chosen from an NV dimensional Gaus-
sian distribution P(Y|M) ~ N (u, X), note that the covariance matrix, X, of this multivariable
Gaussian is not diagonal, as we expect correlations between drugs from the same group. Then
the specific features that represent the sequence are randomly chosen, each feature from its corre-
sponding susceptibility component, Y; where ¢ = 1...N with N being the number of drugs in the
group. These features are regarded as the "true” susceptibilities. The ones observed are a noisy
version of the true ones, P(Y°VY;) ~ N (Y;, 27V). In figure 1A we illustrate this model for a
class of N=3 drugs. The Y;°V variables at the bottom are always observed. This means that the
sequences are observed, and hence also their features. Thus, we aim in learning the model param-
eters = {P(M), u?V, 27V, 2, 1} from examples of {Y, YV} and predicting the values of the
variables {Y'} given a previously unseen example, of {Y >V} Formally, the probabilistic model in-
duced by the network is: P(Y, Y5V, M|0) = P(M)P(Y|M) ], P(Y;5V|Y;) and the maximum
likelihood optimization problem is: arg maxg log P(Y,Y*"|0).

The parameter estimation procedure of this model is composed of two phases. First, is the feature
extraction phase implemented as separate SVRs for each drug. Second, the Bayesian network is
trained, when the prediction of the SVR for each sequence serves as the observed variables of the
network. Since the "true” FR values, Y, are only partially observed, the optimization is done using
EM.

3 Results

We used the SVR-net model to predict the FR for the HIVdb dataset [5]. This dataset includes 621
protease sequences and 418 RT sequences. The results for each drug class are presented in figure
2. The height of the bars is the mean squared error (MSE) achieved. The error bars represent the
standard error (SE) over the 10-fold cross validation (CV). The white (leftmost) bars represent the
state of the art results using independent SVR for each drug, and the dark (rightmost) bars represent
the results achieved by the SVR-net model. The improvement over the state-of-the-art prediction
is immense showing mean squared errors that are 80-38% of the current errors. For the NNRTI
class, due to the small number of drugs in this class, the improvement is less remarkable, though
still evident.

The SVR-net model introduces two novel elements over predictions with independent SVRs: a
Gaussian-mixture prior distribution on the drug resistance, and correlations between the drugs, mod-
eled by a non-diagonal multivariate Gaussian. To asses the effect of these elements, we experimented
with predicting the drug resistance of viral sequences in the PI dataset using two intermediate mod-
els: An SVR-net model with a single Gaussian component (i.e. M is fixed and constant) and an
SVR-net model where the prior distribution over each Y; is an independent mixture of two univari-
ate Gaussians (i.e. a separate and independent SVR-net model for each drug). The results, shown in
Figure 2(a), indicate that the role of the Gaussian-mixture prior is stronger than that of the correlation
between the drugs.

Figure 1B shows the 3-dimensional data of the NNRTI class. The axis represent the FR of the three
drugs of this class in a log scale. The red dots mark the center of the Gaussians that were learnt.
This figure exemplifies the motivations as well as the suitability of the SVR-net model to the data.
The two aspects utilized here are observed: the prior distribution of the two Gaussians, as well as
the fact that the coordinates of these Gaussians support their interpretation as either susceptible or
resistant, thus expressing the correlation between the drugs.
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Figure 2: The Success Rate on the Three Drug Classes. The drug names appear on the X axis.
The Y axis shows the mean squared error. The error bars are the standard error. The state-of-the-art
(separate linear SVR; leftmost bars) is compared with the new SVR-net model (rightmost). For
Protease inhibitors (A) a comparison of the contribution of the two different aspects incorporated
in our model: the correlation between the drugs (green; second leftmost) and the miture of two
Gaussians as a prior (cyan; second rightmost) is presented.

4 Discussion and Conclusions

This paper presents a model that focuses on exploiting the known biochemically-driven structure
of the data. Two main aspects are considered. First is the Prior distribution of the data. This has
been reported before to fit a mixture of two Gaussians independently for every drug [1]. We show
that by considering this fact the prediction is significantly improved. Theoretically, having 2 Gaus-
sians in each of the one dimensional spaces, might result with many Gaussians in the higher space.
Considering that each Gaussian is associated with either resistant or susceptible sequences, having
only two Gaussians at the high dimension would mean that the multidrug resistance is inherent.
Due to limited data, we could not test the SVR-net model with a larger number of Gauissians (4, 6
etc.). Inspecting the NNRTI data (figure 1B) supports the 2 Gaussians model. Yet, when data will
be available, examining its distribution at the higher space will reveal more insights regarding the
relations between the drugs.

These relations are the second aspect considered in this study. Using the classification of the drugs
according to their mechanism of action the number of models is reduced from 17 independent mod-
els to 3. Thus, the noise in the data is better overcome. This allows to slightly increase the compli-
cation of the models over the independent linear SVR, which are evidently very simplifying.

The described model brings up a novel approach also from the Machine Learning point of view.
The utilization of SVR as a feature extraction stage is a simple way of combining the advantages
of discriminative learning together with the generative approach. The Bayesian network models the
inherent structure of the data, but it would be intractable to directly add a layer of hundreds of nodes
necessary to represent the sequence directly. This is overcome by the discriminative power of the
SVR. We are currently examining an alternative approach formalizing the same model under the
framework of conditional random fields.
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5 Supplementary Material - Training and Testing

An SVR was trained using SVMLight [4] in 10-fold cross-validation separately of each drug on its
labeled data. The tube width was set to 0.1. The cost was optimized using binary search. The final
cost values for protease inhibitors are APV: 0.09; ATV: 0.06; IDV: 0.05; LPV: 0.12; NFV: 0.04;
RTV: 0.01; SQV: 0.08; for NRTIs: 3TC: 0.11; ABC: 0.01; DAT: 0.07; DDC: 0.04; DDI: 0.18; TDF:
0.01; AZT: 0.06; d4T: 0.07; ddl: 0.18; ddC: 0.04; ZDV: 0.06; and for NNRTIs: DLV: 0.16; EFV:
0.36; NVP: 0.30;

These costs were used both for the baseline prediction estimation, and for the new SVR-net model
suggested here. For the SVR-net model, the labeled data (i.e. data with available phenotypic fold-
resistance measured) of each drug was repartition to 10 folds. At the first phase, an SVR was trained
using 9 folds. In the following phase, the network was trained using EM on the same 9 folds and the
available unlabeled data of this drug.

Given a new sequence of the virus, predictions are extracted from each SVR, and then the network
is used to evaluate the most probable FR value of the relevant drug node. Note, that available FR
values of neighboring drugs were not given as input to the network.



