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Abstract. In this paper we discuss the problem of fitting ¢; regularized predic-
tion models in infinite (possibly non-countable) dimensional feature spaces. Our
main contributions are: a. Deriving a generalization of ¢; regularization based on
measures which can be applied in non-countable feature spaces; b. Proving that
the sparsity property of ¢; regularization is maintained in infinite dimensions; c.
Devising a path-following algorithm that can generate the set of regularized so-
lutions in “nice” feature spaces; and d. Presenting an example of penalized spline
models where this path following algorithm is computationally feasible, and gives
encouraging empirical results.

1 Introduction

Given a data sample (z;, ;)" ; (with z; € R? and y; € R for regression, y; € {£1}
for classification), the “non-linear” regularized optimization problem calls for fitting
models to the data, embedded into a high dimensional feature space, while controlling
complexity, by solving a penalized fitting problem:

B(\) = arg mﬂinz L(y, 87¢(:)) + AJ(B) (1)

where L is a convex loss function; J is a convex model complexity penalty (typically
taken to be the ¢, norm of 3, with ¢ > 1); (i) € R is an embedding of z; into the
feature space indexed by £2; and 3 € R¥’ is the parameter vector describing model fit.
This formulation is at the heart of many successful modern data analysis tools.

Kernel Support Vector Machines (Schoelkopf and Smola 2002) and other kernel
methods, fit ¢ regularized models in high (often infinite) dimensional reproducing ker-
nel Hilbert spaces (RKHS). The key observation which allows us to solve these prob-
lems is that the optimal solution in fact lies in an n-dimensional sub-space spanned by
the embedded data. When we move away from /s regularization, the nice algebra of
kernel methods no longer applies, and the prevalent view is that exact very high dimen-
sional fitting becomes practically impossible.

Boosting (Freund and Schapire 1997), is a popular and successful committee method,
which builds prediction models as linear combinations of weak learners (usually small
decision trees), which we can think of as features in a high dimensional feature space.
As shown in Rosset et al. (2004) and references therein, boosting approximately and



incrementally fits ¢; regularized models in high dimensional spaces — typically the
space of all trees with a given number of terminal nodes.

Fitting /; -regularized models in very high (finite) dimension is known to be attrac-
tive because of their “primal” sparsity property:

Every /1 regularized problem has an optimal solution with at most n non-zero
coefficients, no matter how high the dimension of the feature space used. Under
mild conditions, this solution is unique.

This result is a simple consequence of Caratheodory’s convex hull theorem. It is proven,
for example, in Rosset et al. (2004).

Thus, the success of boosting (approximate ¢; regularization under embedding) and
the attractiveness of the ¢; sparsity property, lead us to the two main questions we
address in this paper:

1. Can we generalize ¢; regularization to infinite dimension in a consistent way, and
will the sparsity property still hold?

2. Can we solve the resulting regularized problems despite the fact that they are infi-
nite dimensional?

We answer the first question in Sections 2 and 3. In Section 2 we offer a formulation
of /; regularization based on measure rather than norm, which naturally generalized to
infinite non-countable dimension. We then show (Section 3) that the sparsity property
extends to infinite dimensional fitting, and even to non-countable dimensions, when us-
ing this definition. However, this property is contingent on the existence of the solution
(which is not guaranteed in non-countable dimension), and we present sufficient condi-
tions for this existence. We also formulate a simple, testable criterion for optimality of
finite-dimensional solutions to infinite dimensional problems.

Armed with these results, in Section 4 we offer an answer to our second question,
and present an algorithm that can provably generate these solutions, if they exist, which
is based on a generalization of path-following algorithms previously devised for the
Lasso and its extensions (Efron et al. 2004, Zhu et al. 2004).

We then describe in Section 5 an embedding problem — of fitting penalized splines
to low dimensional data — where our algorithm is practical, and demonstrate its appli-
cation on several datasets.

Throughout this paper we denote the index set of the functions in our feature space
by §2. The notation we use in this feature space is: ¢(z) € R is the embedding of
z, pa(r) € R? with A C 2 is the subset of coordinates of this embedding indexed
by A (in particular, ¢, (z) € R is the “w coordinate” of ¢(z) for w € {2), while
$a(X) € R"*4 is a matrix of the empirical partial embedding of all observations. We
also assume throughout that sup,, ,, ¢, (7)| < oo, i.e., that embedded coordinates are
uniformly bounded.

Remark: Throughout the first part of this paper we also assume no intercept (or
bias), i.e., that all features in {2 participate in the norm being penalized. This is done for
simplicity of exposition, but we note that all our results hold and are easily generalized
to the case that contains intercept (or even multi-dimensional intercept, like the spline
basis in Section 5).



2 ¢, regularization in finite and infinite dimensions

The standard £;-penalized problem in Eq. (1) has J(3) = [|B|l1 = >_ ¢ |Bw|- The
alternative “constrained” formulation, which is equivalent under convexity of L , is:

B(C) = arg mgnZL(y,;,ﬂTqS(xi)) st ||Bl < C 2)

This definition works fine when |2| < Vo, i.e., when the feature space is finite or
countably infinite. We now generalize it to the non-countable case. First, we replace the
{1 norm by a sum with a positivity constraint, by the well known trick of “doubling”
the dimension of the feature space. We define 2 = 2 x {—1, 1} and for every & € (2,
& = {w, s} define ¢ () = s, (x). Our new feature space is: ¢(z) € Rl It is well
known and very easy to prove that any optimal solution B of Eq. (2) corresponds to one
(or more) optimal solutions of a positive constrained problem

HC) = argmin 37 Ly, o(ai)) st Bl < €, 5= 0. 3)
Through the transformation,

Bu} = éu},l - 5u}771~

Thus without loss of generality we can limit ourselves to only formulation Eq. (3) with
positive coefficients and drop ~ from our notation.

Given the positivity constraint, we next replace the coefficient vector (3 by a positive
measure on {2. Let (£2, ) be a measurable space, where we require X' O {{w} : w €
2}, i.e., the sigma algebra X contains all singletons (this is a very mild assumption,
which holds for example for the “standard” Borel sigma algebra). Let P be the set of
positive measures on this space. Then we generalize (3) as:

Pe = arg in 3 Ly /Q 60 (2:)dP(w)) s.t. P(2) < C @)

For finite or infinite countable {2 we will always get X = 2% (which is the only possible
choice given our singleton-containment requirement above), and recover exactly the
formulation of (3) since P({2) = ||5]|1, but the problem definition in (4) also covers the
non-countable case.

3 Existence and sparsity of £; regularized solutions in infinite
dimensions

In this section we show that using the formulation (4), we can generalize the sparsity
property of ¢; regularized solutions to infinite dimensions, assuming an optimal solution
exists. We then formulate a sufficient condition for existence of optimal solutions, and
a testable criterion for optimality of a sparse solution.



3.1 Sparsity result

Theorem 1. Assume that an optimal solution of the problem (4) exists, then there exists
an optimal solution Pc supported on at most n + 1 features in {2.

To understand this result and its proof let us define the set D = {¢,(X) : w €
2} C R™ as the collection of feature columns in R™. Then the sparsity property simply
states that any (scaled) convex combination of points in D can be described as an (iden-
tically scaled) convex combination of no more than n + 1 points in D. For this finite
case, this is simply Caratheodory’s convex hull theorem. For the infinite case, we need
to generalize this result, as follows:

Theorem 2. Let y be a positive measure supported on a bounded subset D of R™. Then

there exists a measure v whose support is a finite subset of D, {z1,...,zp}, k <n+1,
such that i

/zdu(z) = Zzzdu(zl)

5 i=1

We postpone the proof of Theorem 2 to Appendix A, and use it to prove Theorem
(1). For simplicity we assume that (D) = C, or equivalently, that P (£2) = C in (4).
If this is not the case and Po(2) = C’ < C then we can simply apply Theorem 1 to
Pe for which equality holds, and the resulting sparse solution will also be optimal for
constraint value C, i.e. 150 = Pc/.

Proof (of Theorem 1). Let ]50 be an optimal solution of (4). We define a measure y on
R™ as a push—forward of P, i.e. u(B) = P({w : ¢,(X) € B}). Let D (as previously
defined) be the image of {2 under mapping ¢ (X ). The measure y is supported on D,
and by our assumption from Section 1, D is bounded. We apply Theorem 2 to set D and
measure . Each z; € D, so the preimage of z; under the mapping ¢ (X) is nonempty.
For each ¢ we pick any w; such that ¢,,(X) = z;. Then Zle v(z;) + o, (+) is an
optimal solution of (4) supported on at most n + 1 features.

3.2 Sufficient conditions for existence of solution of (4)

Theorem 3. If the set D = {¢.,(X) : w € 2} C R™ is compact, then the problem (4)
has an optimal solution

Proof of Theorem 3 uses the following result:
Proposition 1. The convex hull of a compact set in R™ is compact
Proof of Proposition 1 is provided in Appendix A.

Proof (of Theorem 3). We consider the set C' - D = {C - ¢,(X) : w € 2} C R",
where C is the (scalar) constraint from (4). By Proposition 1, the convex hull co(C - D)
is also a compact set. By Weierstral Theorem the continuous function ), L(y;, 2;),
(21,...,2,)T € R™ obtains its minimum at some point 2 = (%1,..., 2,)T € co(C-D).
By Caratheodory’s Convex Hull Theorem 6 there exist points z*, ..., 2* € D,k < n+1
and b; > 0, Zle b;z* = z. For each 2* we pick any w; such that C'- ¢,,, (X) = z°. The
measure 4 = C'), b;d,,, on §2 solves the problem (4).



The condition for existence of an optimal solution of the problem (4) provided in
Theorem 3 can be difficult to check in practice. The following corollary provides us
with much simpler and elegant criterion

Corollary 1. If the set 2 is compact and the mapping ¢ (X) : £2 — R™ is continuous,
then the problem (4) has an optimal solution.

Proof. Tt is an immediate consequence of the fact that the continuous image of a com-
pact set is compact.

3.3 Simple criterion for optimality

Given our results here, we can now devise a simple criterion for optimality of a finite
solution to an infinite dimensional problem:

Theorem 4. If an optimal solution to the regularized problem exists, and we are pre-
sented with a finite-support candidate solution of (3) P such that 3A C £, |A] <
00, supp(p) = A, we can test its optimality using the following criterion:

P is optimal solution of (3) < VB s.t. AC B, |B| < oo, P is optimal solution for:

min S Cu, /B b (2:)dP(w)) s.t. P(B) < C

PePp “=
4

Proof.

=:P is the optimal solution in the whole (infinite) space, so it is the optimal solution
in any subspace containing its support.

<«: Assume by contradiction that P is not optimal. We know a finite-support optimal
solution exists from Theorem 1, mark this by P. Set B = supp(P) U supp(P). Then
|B| < oo and A C B obviously, and P is also better than P in B.

This theorem implies that in order to prove that a finite solution is optimal for the
infinite problem, it is sufficient to show that it is optimal for any finite sub-problem
containing it. We will use it in the next section to prove that our proposed algorithm
does indeed generate the optimal solutions to the infinite problem, if they exist.

4 Algorithms to generate the full solution paths

In this section, we are assuming that the optimal solution to the problem (4) exists
for every C' (possibly because the feature space complies with the required sufficient
conditions of Theorem 3 or Corollary 1).

We now show how we can devise and implement a “path-following” algorithm,
which generates this full solution path at a manageable computational cost. We describe
this construction for the case of Lasso, i.e., when the loss is quadratic, and note that a
similar algorithm can be devised for ¢; regularized hinge loss (AKA ¢;-SVM) (Zhu et
al. 2004).

Efron et al. (2004) have shown how an incremental homotopy algorithm can be
used to generate the full regularized path at the cost of approximately one least square



calculation on the full data set, for a finite feature set. Their algorithm is geometrically
motivated and derived. For our purposes, we prefer to derive and analyze it from an
optimization perspective, through the Karush-Kuhn-Tucker (KKT) conditions for opti-
mality of solutions to (3). See Rosset and Zhu (2006) for details of the KKT conditions
and their implications. The resulting algorithm, in our parameterized basis notation, and
with our space-doubling, non-negativity trick of Section 2:

Algorithm 1 LAR-Lasso with parameterized feature space *

1. Initialize:
Set 3 = 0 (Starting from empty model)
A = argmin,, ¢, (X)"y (initial set of active variables)
r =y (residual vector)
Y4 =—(pA(X)PA(X)) Ltsgn(da(X)Ty), yac = 0 (direction of model change)
2. While (ming, ¢, (X)'r < 0)
(a) dy =min{d > 0 : ¢y, (X)"(r—dpa(X)ya) = b (X) (r—dpa(X)ya), w ¢
A W e A}
(b) do =min{d >0: 6, +dv, =0, w e A} (hit0)
(C) d= I’IliIl(dl, dQ)
(d) Update:
B B+dy
r=y—¢a(X)Ba
If d = dy then add feature attaining equality at d to A.
If d = ds then remove feature attaining 0 at d from A.
Y4 = —(9a(X) ¢a(X))  sgn(da(X)r)
YAC = 0

This algorithm generates the full regularized solution path for (3), i.e., for a

Theorem S. At any iteration of Algorithm 1, assume we are after step 2(c), and let
I < d, where d is given by step 2(c). Then the finitely-supported measure P, with atoms
at A of size .4 + lry4 is an optimal solution to (3) with C = ||B4]|1 + I.

Proof. For finite (2 this algorithm is equivalent to LARS-Lasso of Efron et al.(2004),
and hence is known to generate the solution path.

For infinite {2, Theorem 4 and the finite {2 result combined complete the proof, since
for any finite B such that A C B C {2, the finite feature set result implies optimality of
the finite-support measure P (C), generated by the algorithm, in the feature set B.

The key computational observation regarding Algorithm 1 is that the only step
where the size of the feature space comes into play is step 2(a). All other steps only
consider the set of (at most n + 1) features included in the current solution. So the key
to applying this algorithm in very high dimension lies in being able to do the search in
step 2(a) efficiently over the whole non active feature space. Denote:

)‘(/8) = —ur (X)Tr

* For simplicity, our description does not include a non-penalized constant. Including the con-
stant (or constants, as we do in Section 5) complicates the notation but does not cause any
difficulty.



where r, 3, and w’ € A are as in step 2(a). We can then re-write 2(a) as:
dy =min{d > 0: —¢,(X)"(r — dpa(X)ya) = MB) — d, for some w ¢ A}
If we fix w ¢ A, we can find the value [(w) at which we would attain equality. Denote:

¢ (X)'r + A(B)

l(w) = (5)
) X oA X a 1
and let:
~ Jl(w) ifl(w)) >0
d(w) = {oo if l(w)) <0 ©)
then our search problem in 2(a) becomes one of finding:
Y= ind 7
w arg“r)néﬂ (w) )

Now, feature spaces in which our algorithm would be applicable are ones that allow a
minimization of d(w) over the infinite feature space, e.g., by analytically solving the
problem (7) using a parametrization of 2.

4.1 Computational cost

Efron et al. (2004) argue that for the algorithm we present, the number of pieces of the
regularized path, and hence the number of iterations is “typically” O(n), with a finite
number of features. The switch to infinite dimension does not change the fundamental
setting: the sparsity property we prove in Section 3 implies that, once we have n + 1
features included in our solution, we do not have to consider other features anymore
(except if a “drop” event happens, which reduces the number of active features).

Assuming O(n) iterations, the cost hinges on the complexity of the step length /
next feature search. For the lasso spline example below, the step length calculation for
each iteration is O(n?p) (where p, the dimension of the original data, is typically very
small), and the direction calculation is O(n?) (using an updating formula) for an overall
iteration complexity of O(n?p). The total complexity thus comes to O(n®p) under the
assumption on the number of iterations. In our experiments, this assumption seemed to
hold.

5 Example: additive splines with total variation penalty

In this Section, we illustrate the power of infinite-dimensional /;-regularized learning
by considering a regression problem on functions in [0, 1] — R. We will suggest a spe-
cific (infinite) feature space, and show that ¢;-regularization under this feature space
corresponds closely to bounding the kth total variation for the predictor function, re-
covering at the optimum a kth order polynomial spline (i.e., a piecewise degree k — 1
polynomial function with k¥ — 2 continuous derivatives). We focus here on quadratic
loss, but our results can be easily generalized to other loss functions.



For a given order k, let {2 = {(a, s)|a € [0, 1], s € £1} and consider the features:

Ga,s(x) = s(xz — a)i_1

We also allow k additional unregularized features (“intercepts”):

¢r(z) ="
forr =0,...,k — 1. For observations (z;,y;),% = 1,. .., n, our optimization problem
is then given by:
n
minimize Z(yl — fpp(z)?st. P(2) < C (8)

i=1

where P is a measure over {2, 5 € R* and
frpla / b (£)IP(a:) + 3 rtn(s) ©)

is the fitted function corresponding to (P, 3). From Theorem 1 and Corollary 1 we know
that a sparse optimal solution to problem (8) exists. This will be a k-th order spline.

We note that with the above features we can approximate any function arbitrary
well, and can exactly match any finite number of (consistent) observations. The key
to this specific choice of basis for functions is the regularization cost (i.e. P({2)) that
applies to some predictor fp 3. This is a familiar situation in learning with infinite-
dimensional feature spaces, which we are used to encountering in kernel-based meth-
ods, where the choice of kernel (implicitly specifying a feature space) defines the regu-
larization cost of predictor, rather than the space of available predictors.

In our case the ¢; regularization cost, P({2), using our feature space, corresponds to
the kth total variation (the total variation of the (k—1)th derivative). We can demonstrate
that on our sparse spline solution

Proposition 2. For an optimal solution that is a polynomial spline fp E with m knots

at (a1,81), ---(Am, Sm ), and for which P(Q) = C (i.e., the constraint in (8) is tight) we
have: - .
V(fEs") = (k= 1)1P(2)

Proof. We first observe:
f(k V@)= (k=11 siP(a;, 5)
a;<x

Assume we have some ¢, j such that a; = a; and s; # s;, and assume wlog that 5; = 1
and P(a;,1) > P(al, —1). We can now define P by P(a“ ) = P(a;,1) — P(a;, —1),
P(a;,—1) = 0 and P = P everywhere else. Then P(£2) < P(£2) and fe3="Ipp
and we get a contradiction to optimality

Thus we have no knot with both positive and negative coefficient, and it follows

that:
TV(fi") Z|sz ai,s:)| = (k= 1)1P(R)



For motivation and discussion of total variation penalties, we refer the reader to
Mammen and van de Geer (1997) and refrences therein. Intuitively, by imposing a total
variation constraint on a (very) large family of functions, we are forcing the resulting
solution to be smooth (by limiting wiggliness of the (k — 1)th derivative).

It has previously been shown that minimizing a quadratic loss subject to a constraint
on the kth total variation yields a kth order spline (Mammen and van de Geer 1997).
It follows immediately that our sparse spline solution is indeed the optimal solution,
not only of our ¢; regularized problem, but also of the fully non-parametric regression
problem, where a total-variation penalty is applied.

5.1 Practical implementation and the feature search problem

Looking back at Algorithm 1 and the next feature search problem, we observe that at
each iteration of the path following algorithm we have a set .4 of indices of active func-
tions with indexes in {2, characterized by their knots:

w € A= ( —w)~" has non-0 coefficient in the solution.

In the search criterion for the next basis function in (5), I(w) comprises a ratio of poly-
nomials of degree k — 1 in w. The coefficients of these polynomials are fixed as long as
w does not cross a data point or a current knot in A (since both of these events change
the parametric form of ¢,,, due to the positive-part function (-)).

Investigating these polynomials we observe that for k € {1,2} we get in (5) ratios
of constant or linear functions, respectively. It is easy to show that the extrema of such
functions on closed intervals are always at the end points. Thus, the chosen knots will
always be at the data points (this was first observed by Mammen and van de Geer 1997).
Interestingly, we get here a situation that is analogous to the RKHS case: we have
identified an n + k dimensional sub-space of the feature space such that the solution
path lies fully within this sub-space. If k& > 3, however, then we get ratios of higher
degree polynomials in (5), and their extrema are not guaranteed to be at the ends of
the intervals. Hence, knots can fall outside data points and we are really facing an
optimization problem in infinite dimensional space.

As a concrete example, we now concentrate on the case £k = 3 and the lasso model-
ing problem. The ratio of quadratics we get in (5) can be optimized analytically within
each segment (flanked by two points which are either existing knots or data points),
and once we do this for all such segments (there are at most 2n per dimension, or a
maximum of 2np for the additive model), we can find w* — the global minimizer of
d(w) in (6) — which will be the next knot.

We demonstrate this on a 2-dimensional simulation example. For z € [0, 1], let:
g(x) = 0.125 — 0.1252 — 2 + 2(z — 0.25)2 — 2(z — 0.5)% + 2(x — 0.75)3..

a quadratic spline with knots at 0.25, 0.5, 0.75. Our target function, drawn in the upper
left box of Figure 1, is f(z1,x2) = g(z1) + g(z2).

We draw 100 training samples uniformly in [0, 1] x [0, 1] with gaussian noise:

Y = f(il'il, {Eig) + €, € 1"‘1\'/(1 N(O, 003)
We then apply our quadratic spline algorithm. The results can be seen in Figure 1.
Initially the data is clearly under-fitted, but in about 40 iterations of Algorithm 1 we get
a reasonable estimate of the true surface. After that, the fit deteriorates as over-fitting
occurs and we are mostly fitting the noise.
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Fig. 1. True model (top left) and models generated in 15,40 and 65 steps of Algorithm 1

X

5.2 Real data examples: Boston and California Housing datasets

We briefly describe application of our additive spline algorithm with k& = 3 to the
Boston Housing dataset (Blake and Merz 1998) (13 features, 506 observations, of them
455 used for fitting, the rest held out for evaluation) and the California Housing dataset
(Pace and Barry 1997) (8 features, 20640 observations, of them 1000 used for fitting).
Figure 2 shows the performance on holdout data, as a function of the number of itera-
tions of the path following algorithm (an indication of model complexity). We observe
that for both datasets, increased complexity through additive spline fitting does seem to
significantly improve the predictive performance (although the small size of the hold-
out set for the Boston Housing dataset implies we should take these results with some
caution). For both datasets, the performance still seems to be improving after about 200
iterations, when the additive spline model already contains 10 knots across all origi-
nal variables for the Boston Housing dataset and 15 knots for the California Housing
dataset. Overall performance improvement due to the use of splines was 10% (Califor-
nia) and 15% (Boston) in MSE compared to quadratic regression and 17% (California)
and 45% (Boston) compared to simple linear regression.

Remark 1 We were not able to run the algorithm beyond about 200 iterations for
Boston Housing and about 250 iterations for California Housing due to accumulation
of numerical inaccuracies in our R implementation (caused by operations like squared
root performed in finding w*). So the knots selected are not exactly where they should
be and these tiny errors accumulate as the algorithm proceeds, eventually leading it
astray.
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Fig. 2. Results of running additive spline algorithm on Boston (left) and California (right) Hous-
ing datasets. For comparison, both plots show the holdout MSE of regular linear regression
(dashed) and quadratic regression (solid), compared to the improved performance from the addi-
tive splines. See text for details.

6 Discussion

In this paper we have addressed some of the theoretical and practical aspects of fitting
{1 regularized models in infinite dimensional embedding feature spaces. In Section 3
we described some of the important mathematical and statistical properties of the solu-
tions: existence, sparsity, and optimality testing. In Section 4 we developed an algorithm
which can practically find the solutions, if the feature spaces facilitate the next feature
search problem we defined in Eq. (7). We demonstrated in Section 5 that this indeed
leads to a practical and useful modeling tool in the case of penalized regression splines.

While our results combine together to give a coherent picture of a theoretically
attractive and practically applicable methodology, there are clearly a few additional
questions that should be addressed to fully understand the potential of /1 regularization
in infinite dimensions.

First and foremost is the question of learning performance, both practical and the-
oretical — can ¢; regularized embeddings really offer a useful learning tool? From the
practical side, we have evidence in the success of boosting, basis pursuit and other /;-
type methods in high dimension. We can also add our spline example and the promising
performance it demonstrates.

From the learning theory perspective, learning with ¢y regularization in infinite-
dimensional spaces enjoys strong learning guarantees which depend only on the /5
norm of the classifier and the £ norm of the feature vector (i.e. the the kernel values).
Unfortunately, the situation is not as favorable in the case of ¢; regularized learning in
infinite dimensional spaces. Learning guarantees based on the ¢;-norm of the classifier
and on sup,, . [¢. ()| (i.e. the £ -norm of the feature vectors) also depend logarithmi-
cally on the dimensionality (Zhang 2002). In fact, it can easily be seen that bounding



sup,, , |¢. ()| alone is not enough to guarantee learning in infinite dimensional spaces:
consider a space with a feature wp for each finite set B C {2 such that ¢p(z) = 1 iff
x € B. Any finite sample can be perfectly fitted with a classifier of ¢;-norm 1 without
attaining any generalization.

However, learning can be assured if the space of feature mappings {¢,, : © —
Rlw € 2} is of low-complexity, e.g. low VC-dimension, low Rademacher complexity,
or having a low covering numbers. In this case, we can view a bounded ¢; -classifier
as a convex combination of (scaled) base-predictors, and apply results for combined
classifiers (Koltchinski and Panchenko 2004).

It is interesting whether more general learning guarantees can also be obtained
based on analytic properties of the features ¢,, (). Zhang (2002) has already provided
guarantees on infinite-dimensional learning with a bound on sup,, ,, |4, ()| and on the
¢1-norm of the classifier, by also requiring the entropy of the classifier to be high. This
requirement precludes sparse classifiers and so is disappointing from our perspective.
However, perhaps it is possible to require some sort of “dual” constraint on the features
instead, precluding them from being overly sparse or disjoint. Another possibility is
obtaining guarantees in terms of smoothness or topological proprieties of the features,
especially when there is a natural parametrization of the features, as in spline example
of Section 5.

A second important question relates to deriving a general characterization of the
“interesting” feature spaces where the feature search problem can be solved. We have
seen in Section 5 that for the spline example, for k¥ < 2 the problem is trivial, and for
k > 3 it cannot easily be solved analytically. The case where the full power of our
methodology was deployed was when k£ = 3 (quadratic splines): on the one hand, solv-
ing the truly infinite dimensional problem would not be possible without Algorithm 1,
and on the other the feature search problem admits an analytic solution. We have some
preliminary results about the properties of the feature spaces and their parametrization
through (2 that facilitate such analytic solutions, but that is a topic for future work.

Our spline regression example has interesting connections to recent work on use of
the ¢ penalty for multiple kernel and multiple component learning (Bach et al. 2004,
Zhang and Lin 2006). These works employ the ¢; penalty between components or ker-
nels to get sparsity in these objects (note that if they have less than n objects no sparsity
is guaranteed). Within kernels or components the /5 penalty is still used. Our approach
gives sparsity in the original feature space, and when it has several components (like
the two dimensions 1, z2 in the simulated multivariate spline example), our methods
control the total number of features used across all components combined. Another
important difference is that our approach leads to simple, efficient, algorithms for gen-
erating the full regularized path, while Bach et al. (2004) and Zhang and Lin (2006)
require complex optimization approaches to solve for a single regularization setting.

A Proofs of convexity and measure results

Appendix A is organized as follows. First we present necessary definitions and facts
about measures and convex sets. Then we prove Theorem 2.



Definition 1 We define co(A) as the intersection of all convex sets B containing A,

co(A) = ﬂ B.

ACB
B — convex

Analogously co(A) will denote the closure of co(A).

Another natural way to define a co( A) is to define it as the set of all convex combina-
tions of finite subsets of A. Next lemma states that both those definitions are equivalent.

Lemma 1. For a set Alet co'(A) ={z:z =Y ax;,x; € A, a; = 1,a; > 0}.
i=1 i=1
Then co(A) = co’(A).

This is a very well known fact, but the proof is easy so we provide it.

Proof (of Lemma 1). The inclusion co’(A) C co(A) is obvious, as every convex set
containing A contains all convex combinations of points of A.
It remains to prove that co’(A) D co(A). We shall show that co’(A) is a convex

n k
set. Indeed, let x,y € co’(A). By definition x = > axi,y = . Biyi, i, ¥i €
i=1 i=1

n k
A a;=1,> 8; = 1,4, 8; > 0. Then for every ¢ € [0, 1]
i=1

=1

n k
tr+ (1 -ty = tzaixi + (1 —t)ZBiyz‘
i=1

=1

is a convex combination of points 1, ..., Ty, Y1, - -, Yk, SO it is an element of co’(A).
Trivially A C co’(A), so co’(A) is a convex set containing A, and thus it contains

co(A).
We are going to need the following classical result:

Theorem 6 (Caratheodory’s Convex Hull Theorem). Let A be a finite set of points
in R™. Then every x € co(A) can be expressed as a convex combination of at most
n + 1 points of A.

A corollary of Caratheodory’s Convex Hull Theorem is Proposition 1, the classical
fact which is essential for our considerations (see also Rudin (1991), Theorem 3.20.)

Proof (of Proposition 1 from Section 3.2). By Caratheodory’s Convex Hull Theorem
and Lemma 1 co(A) is the image of a mapping{a1, ..., an+1,21,- -+ Zn+1} — Z?jll a;z;.
This is a continuous mapping on a compact domain {Z?;’ll a;,a; > 0} x A", so its
image is compact.

Now we need to connect the theory of convex sets with measures on bounded sub-
sets of R™. Lemma 2 provides such a link.



Lemma 2. Let A be a bounded subset of R™. Then for any probability measure p with
supp(p) C A there holds

/ wdu(x) € co(A).

A

Remark 2 This result does not generalize to the non-Euclidean case .

If A is a subset of a topological vector space V such that V* > separates the points of V
and if €o(A) is a compact set then it is always true that [, xdp(zx) € co(A). Compare
(Rudin 1991, Theorem 3.27).

However, even if A is a bounded subset of a a Hilbert space and coA is not closed,
[ 4 xdp(x) might not be contained in coA.

For every bounded subset A of R™ and C' € R we define D¢ (A) to be a set of all
v € (R™)*, ||| = 1 such that ¢(z) < C forevery z € A.

For the proof of Lemma 2 we shall need the following two propositions. Proposition
3 states that ¢o(A) is an intersection of all halfspaces containing A.

Proposition 3. Let A be a bounded subset of R™. Then coA is an intersection of all
sets of the form {x : p(x) < C,p € Dc(A)}.

Proof. This is an immediate corollary of a much stronger results - the Separation The-
orem for topological vector space, see Rudin (1991, Theorem 3.21).

The next proposition states that every point on a boundary of a convex hull of A has
a “supporting plane”.

Proposition 4. For every z € ¢o(A) \ co(A) there exist C € Rand A € Do (A) such
that A(z) — C = 0.

Proof. Let z € ¢o(A) \ co(A). Then there exists a convex set W containing A such that
z¢ Wandz € W.Lete = sup A(z)—C.As z € W, forevery A € Dc(w)
CER,AeEDc (W)

there holds A(z) —c¢ < 0. By continuity of linear operators in R™ there holds ¢ < 0. Due
to compactness arguments there exist Cy and Ay € D¢, (W) such that ¢ = Ay(z) — Cp.
Thus for every point 2’ € B(z,—c) and every A € Da(W) for some C there holds
AZ)—C=AZ —2)+Az) —C < A(Z' —2) —¢ < 0as |A(z' — 2)| < —cbecause
|A|| = 1. Thus B(z,—c) C W. Let us suppose that ¢ # 0. Let I be any diameter of
B(z, —c). The intersection I N W is a convex set, it is a subinterval of /. Moreover, as
W NI =W NI, only the endpoints of I can be not contained in . As z is a midpoint
of I, this is a contradiction with an assumption z ¢ W, so there must be ¢ = 0. Thus
Ag(2) — Cy = 0. As D (W) C D (A), the proposition follows.

3 For a topological space V' we are using a V* symbol to denote a dual space of V—the space of
all continuous linear functionals on V. In case of R™ this space is of course isometric to R™
itself. In particular ¢ € (R™)", ||¢|| = 1 can be identified with a set of all vectors of length 1.



Proof. (of Lemma 2) The proof is by induction on n, the dimension of the space. For

n = 0, R™ consists of a single point and the theorem is trivially true.

Let us assume that the assertion holds for n and let A be a bounded subset of R"*1. We

will denote y = [ zdp(z). Let A be a linear functional on R"*!. We have (by linearity
A

of an integral)

Aly) = / Ae)du(z)
A

and therefore if A € D (A), then A(y) < C'. By Proposition 3 y € ¢o(A). By Propo-
sition 4 either y € co(A) and our assertion is true, or there exist C' and A € D (A)
such that A(y) = C. In the second case u(A \ {z : A(z) = C}) = 0, and therefore
supp(p) C (AN {x : A(xz) = C}). The later set is a convex subset of n-dimensional
hyperplane, and by inductive assumptiony € AN {z: A(z) = C} C A.

Now we are ready to prove Theorem 2.

Proof (of Theorem 2 from Section 3.1). Is is an immediate consequence of Lemma 2
and Caratheodory’s convex hull theorem .
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