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We consider binary classification using Support Vector Machines with Gaussian kernels:
KΣ(xi, xj) = e−(xi−xj)

′Σ−1(xi−xj) and address the problem of selecting a covariance matrix
Σ which gives good classification performance. As with other nonparametric classification
methods based on distances between data points (such as nearest neighbor and Parzen
methods), the choice of distance function (Σ) can be crucial to the success of learning. A
good choice of Σ accounts for differences in the scales of different features (coordinates
of the input vectors x), can remove global correlations between features and can adapt
to the fact that some features may be much more informative about the class labels than
others. We suggest an approach which ties training the SVM and choosing the distance
function, as opposed to the more standard practice of feature normalization as a separate
pre-processing step.

Several previous attempts have been made to “learn the kernel matrix”, ranging from
simply adapting the scalar “bandwidth” (size) of a spherical Gaussian kernel, through
a general approach fitting several of kernel parameters [1], to learning a kernel which is
a linear combination of a pre-specified set of basis or dictionary kernels [2] or learning
kernels regularized through Hyperkernels [3].

In this work, we consider a simple but powerful and flexible family of Gaussian kernels
by representing the covariance through its inverse square root: Σ−1 = AT A and directly
learning a feature transformation matrix A. This is directly analogous to the approach
taken by the Neighborhood Components Analysis algorithm [4] which learns a similar
transformation for use with nearest neighbor classification. Instead of fixing the covariance
matrix Σ and searching for large-margin linear classifier in the feature space induced by
KΣ, we suggest learning Σ and a large margin classifier jointly. We search for a kernel
and classifier pair achieving large margin and small misclassification cost. We do so by
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Figure 1: Data from two classes, each a mixture of four Gaussians. Note the different scale of the two
axes. (a) SVM classification (decision boundary, margin, support vectors) with the best (in terms of test
error) possible spherical Gaussian kernel KσI and a slack penalty of C = 10. (b) SVM classification with
the the kernel found using our alternating optimization method, with the same fixed slack penalty. (c)
Fraction of test points correctly classified, and number of support vectors, for intermediate solutions of
the alternating optimization.



alternately optimizing the classifier fixing the covariance Σ (standard SVM training),
and optimizing Σ fixing the Lagrange multipliers α determining the classifier. The latter
optimization is done by direct gradient descent of a smooth analogue to the SVM objective
which replaces the hinge loss with a differentiable approximation. Although learning
the maximum-margin classifier for fixed KΣ is a convex optimization problem, the joint
optimization problem, over the classifier and Σ, is not convex. Nevertheless, our initial
experiments suggest the alternating optimization procedure described can successfully
recover a matrix A = Σ−1/2 yielding good SVM classifier performance (Figure 1).

Note that for Gaussian kernels, KΣ(x, x) = 1 for all x and Σ, i.e. the implied transforma-
tion into feature space maps the data into the unit sphere, and so the geometric margin is
directly comparable across different kernels KΣ. The misclassification cost, as measured
by a hinge loss (or similar cost) is also comparable across different Gaussian kernels. Thus,
changes in the kernel which both increase the margin and lower the misclassification cost
are always good. However, as with training a Support Vector Machine with a fixed ker-
nel, it is not clear how to balance the margin and the misclassification error. Considering
the entire set of attainable (margin,cost) pairs, the true object of interest is the exterior
“path” of this set, i.e. the set of kernels KΣ and classifiers for which it is not possible to
increase the margin without increasing the misclassification cost, or reduce the misclassi-
fication cost without reducing the margin (where we are allowed to vary both the kernel
and the classifier). This path is a one-dimensional manifold of kernel-classifier pairs, and
our method is in effect a local search which tries to improve this path around a particular
operating point. A more ambitious goal is to obtain the entire path, as can be done for
a single kernel [5].
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