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Consider the problem of estimating the centers µ = (µ1, . . . , µk) of a uniform
mixture of unit-variance spherical Gaussians in Rd,

f(µ1,µ2,...,µk)(x) =
k∑

i=1

1
k

1
(2π)d/2

e|x−µi|2/2, (1)

from i.i.d. samples x1, . . . , xm drawn from this distribution. This can be done
by maximizing the (average log) likelihood L(x1,...,xm)(µ) = 1

m

∑
i log fµ(xi).

Maximizing the likelihood is guaranteed to recover the correct centers, in the
large-sample limit, for any mixture model of the form (1). Unfortunately, max-
imizing the likelihood is hard in the worst case, and we usually revert to local
search heuristics such as Expectation Maximization (EM) which can get trapped
in the many local minima the likelihood function might have.

Despite this, a string of results establishes that the centers can be tractably
recovered, given enough data sampled from a well-separated mixture, using
projection-based methods [1–3], and even using EM [4].

These results require a large separation between centers. In practice, even
with a much smaller separation, given enough data and proper initialization,
EM converges to the global ML solution and allows recovery of the centers [5].
It seems that when data is plentiful, the local minima disappear.

Although the likelihood function for finite data sets may admit many lo-
cal minima, the conjecture proposed here is that in the infinite sample limit,
for data sampled from a distribution of the form (1), with any true centers
µ0 = (µ0

1, . . . , µ
0
k), the only local maxima are the global maxima, given by per-

mutations of the true centers µ0
1, . . . , µ

0
k.

At the infinite sample limit, the likelihood is given by the KL-divergence be-
tween mixture models: L(µ) m→∞−→ EX∼fµ0 [log fµ(X)] = −D

(
µ0‖µ

)
− H(µ0),

where the entropy H(µ0) of fµ0 is constant. Maxima of the infinite-sample likeli-

hood are thus exactly minima of the KL-divergence D
(
µ0‖µ

)
= Efµ0

[
log

fµ0

fµ

]
.

The KL-divergence is non-negative and zero only when fµ = fµ0 . This hap-
pens iff µ1, . . . , µk are a permutation of µ0

1, . . . , µ
0
k, and so these are the only

global minima of the KL-divergence. Our conjecture can therefore be equiv-
alently stated as: for any set of centers µ0, the only local minima of
D

(
µ0‖µ

)
, with respect to µ, are the global minima obtained at per-

mutations of µ0.
The KL-divergence has many stable points which are not local minima, but

rather saddle points. For example, such a saddle point arises when two centers



coincide in µ (but not in µ0). There are also several different basins, one for each
permutation of the centers, separated by non-convex ridges and near-plateaus.
When only a finite data set is considered, local minima easily arise in these near-
plateaus. Even in the infinite-sample limit, EM, or other local-search methods,
might take a very large number of steps to traverse these near-plateaus and
converge. For this reason the conjecture does not directly imply tractability.

The conjecture does imply that no minimum separation is required in order
to establish convergence to the global minimum at the infinite sample limit—
if it is true, what remains is to study the relationship between the speed of
convergence, the sample size and the separation. Moreover, the conjecture implies
that local search (e.g. EM) will converge to the correct model regardless of
initialization (except for a measure zero set of “ridge manifolds” between the
attraction basins of different permutations of the correct centers). Empirical
simulations with “infinite sample” EM (working directly on the KL-divergence)
on three centers in two dimensions confirm this by showing eventual convergence
to the global likelihood, even when initialized with two nearby centers. Current
large-separation results require careful initialization ensuring at least one initial
center from the vicinity of each true center [4, 6].

Of course, the real quantity of interest is the probability Pm, under some
specific random initialization scheme, of being in the basin of attraction of the
global maximum of the likelihood given a random sample of finite size m. In fact,
our interest in the problem stemmed from study of the probability Pm for some
reasonable initialization schemes. The conjecture can be equivalently stated as
Pm → 1 for any initialization scheme, and can thus be seen as a prerequisite to
understanding Pm.

Clarification: the KL-divergence D (p‖µ) between a fixed arbitrary dis-
tribution p and mixture models (1), may have non-global local minima. The
conjecture only applies when p itself is a mixture model of the form (1). In par-
ticular, if p is a mixture of more than k Gaussians, and we are trying to fit it
with a mixture of only k Gaussians, non-global local minima can arise.
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