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Abstract

We study the error and sample complexity of
semi-supervised learning by Laplacian Eign-
maps at the limit of infinite unlabeled data.
We provide a bound on the error, and show
that it is controlled by the graph Laplacian
regularizer. Our analysis also gives guidance
to the choice of the number of eigenvectors k
to use: when the data lies on a d-dimensional
domain, the optimal choice of k is of order
(n/ log(n))

d
d+2 , yielding an asymptotic error

rate of (n/ log(n))−
2

2+d .

1 Introduction

Graph Laplacian plays a central role in several popular
methods for semi-supervised learning (SSL). One pop-
ular approach is graph Laplacian regularization (Zhu
et al., 2003), where a predictor is regularized using a
graph Laplacian based penalty term intuitively mea-
suring the variability of the predictor with respect to
the empirical distribution (variants of this approach
include Zhou et al., 2004; Belkin et al., 2004). At
the limit of infinite unlabeled data, with appropriate
scaling and normalization (see details in Section 3),
this penalty term converges to an appealing measure
of variability with respect to a density:

Jp(f) =
∫

Ω

‖∇f(x)‖2 p(x)dx (1)

where f(x) is a real-valued function and p(x) is the un-
derlying probability density from which data is drawn.
The measure Jp(f) intuitively captures the complex-
ity of function f in a density dependent way. One can
then hope that if there exists a low error predictor f∗

with low complexity Jp(f∗), then regularizing Jp(f)
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can allow us to learn f∗(·) with a sample complexity
that depends on Jp(f∗).

Unfortunately, it was recently shown by Nadler et al.
(2009) that Jp(f∗) by itself is not a good regular-
izer. In particular, in domains having dimensions
greater then one, Jp(f) is minimized by a function per-
fectly fitting the data and almost zero everywhere else,
thus allowing no generalization. Accordingly, Lapla-
cian based regularization alone is not well-behaved in
the limit of infinite unlabeled data and instead yields
nearly constant predictions.

An alternative approach to semi-supervised learning
using graph Laplacians is to restrict training only to
those functions spanned by the leading eigenvectors of
the graph Laplacian (Belkin and Niyogi, 2004). This
approach, known as “Laplacian Eigenmaps SSL”, is
well-behaved at the limit of infinite unlabeled data. In
this paper we show a tight connection between Lapla-
cian Eigenmaps SSL, using an appropriately normal-
ized Laplacian, and the Laplacian penalty Jp(f). In
particular, we show that if there exists a low error
predictor f∗ with low Jp(f∗), then although it cannot
be learned by directly minimizing the graph Laplacian
penalty, it can be learned using Laplacian Eigenmaps,
with a sample complexity determined by Jp(f∗). This
means that even though direct regularization with the
graph Laplacian penalty is ill-posed, it is still relevant
as a complexity measure, and we can still guarantee
learning of functions for which the graph Laplacian
regularizer is finite by using the Laplacian Eigenmaps.

Our main technical result (Theorem 2 in Section 4.1),
which is used in order to establish the above relation-
ship, is a bound on the approximation error in the
Laplacian Eigenmaps space in terms of Jp(f). In par-
ticular, we show that, in the limit of infinite unlabeled
data, any function f for which Jp(f) < ∞ can be ap-
proximated by a function fk spanned by the k leading
eigenfunctions of the Laplacian, with error:

Ex∼p

[
(f(x)− fk(x))2

] ≤ Jp(f)
λk+1

(2)

where λk is the kth eigenvalue of the limit of a graph
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Laplacian, i.e. the weighted Laplacian (Grigor’yan,
2006). Combining (2) with the existing estimation er-
ror analysis in a finite dimensional space, we show the
desired learning guarantees in Section (5).

Our results apply to Laplacian Eigenmaps SSL with a
non-standard Laplacian normalization, which is differ-
ent from the graph Laplacian regularization suggested
by Belkin and Niyogi (2004). In Section (2.1) we dis-
cuss why this particular normalization, but not other
alternatives, might be preferable.

Our analysis also provides insights into the choice of
the number of eigenvectors k of a graph Laplacian to
use, i.e. the dimensionality of the Laplacian Eigenmaps
space. When the intrinsic dimensionality of the sup-
port of p(x) is d, the optimal choice of k scales as
(n/ log(n))d/(d+2), where n is the number of labeled
points. Note the sub-linear dependence on n (depend-
ing on the dimensionality) as opposed to the linear
choice k = n/5 originally suggested. With this op-
timal choice of k, and with enough unlabeled points,
Laplacian Eignmaps SSL achieves an integrated mean
square error rate of (n/ log(n))−2/(d+2), which is up
to a logarithmic factor asymptotically optimal for
nonparametric regressions in the d-dimensional in-
trinsic space, see e.g., (Bickel and Li, 2007). The
results can be further generalized to m times dif-
ferentiable functions, where the optimal k scales as
(n/ log(n))d/(d+2m), and the corresponding optimal er-
ror rate is (n/ log(n))−2m/(2m+d).

2 Setup

Consider an unknown source distribution over input-
label pairs (x, y) where x ∈ RN and y ∈ R, with
−1 ≤ y ≤ 1. The goal of SSL is to learn a good
predictor f(x) for y given a few labeled examples and
many unlabeled examples. We consider SSL in a trans-
ductive setting, where we are given a labeled sample
(x1, y1), . . . , (xn, yn) of n labeled points, and an unla-
beled sample xn+1, . . . , xu of u − n unlabeled points.
The u pairs (xi, yi) are drawn i.i.d. from the source dis-
tribution. We denote the sequence of labeled points
as XL, the sequence of unlabeled points as XU and
both together as X. We denote the label sequences
as YL ∈ Rn, YU ∈ Ru−n and Y ∈ Ru accordingly.
The task of transductive SSL is to estimate YU based
on the given information from XL, YL and XU . Note
that even though for convenience we write f(·) as a
function, we do not actually output a function over
RN , but rather just predictions f(xi) for points in the
sample. It is thus more correct to think of f(·) as a u-
dimensional vector f(X) = (f(x1), . . . , f(xu)) ∈ Ru.
See (Bengio et al., 2004) for a discussion on out-of-
sample extensions to Laplacian-based SSL.

We will use 〈f, g〉u = 1
u

∑u
i=1 f(xi)g(xi) to refer to

the empirical inner product over the data, with cor-
responding norm ‖f‖2u = 〈f, f〉u. The continuous
counterparts are 〈f, g〉L2(p) =

∫
Ω

f(x)g(x)p(x)dx, and
‖f‖2L2(p) =

∫
Ω
|f(x)|2p(x)dx. Let the gradient of f be

∇f , and

‖∇f(x)‖2L2(p) =
∫

Ω

∇f(x) · ∇f(x)p(x)dx

We assume that x follows a continuous distribution
with smooth density p(x) on a compact d-dimensional
support Ω ⊂ RN with smooth boundary ∂Ω. For sim-
plicity assume that p(x) is bounded from above and
away from zero: 0 < a ≤ p(x) ≤ b < +∞.

2.1 Graph Laplacian

Consider a weighted graph G with u vertices cor-
responding to the labeled and unlabeled points
x1, . . . , xu, and edge weights wij measuring the sim-
ilarity between xi and xj defined as:

wij = K(
‖xi − xj‖2

4t
) = e−

‖xi−xj‖2
4t (3)

where t is a bandwidth parameter to be specified. Let
W ∈ Ru×u denote the weight matrix and let D be its
diagonal degree matrix with Dii =

∑
j wij .

We consider a two-step normalized graph Laplacian
defined as follows: first, let W̃ = D−1/2WD−1/2 be
a normalization of the weight matrix, and denote by
D̃ its diagonal degree matrix D̃ii =

∑
j w̃ij . The two-

step random walk normalized Laplacian we use in this
paper is then defined as:

L̃r = I − D̃−1W̃ (4)

This normalized graph Laplacian is from a one-
parameter family of normalized graph Laplacians stud-
ied by (Hein et al., 2005; Coifman and Lafon, 2006).
The normalization step allows us to control the weight
in the limit of graph Laplacians as will be shown in
section (3). See (Hein, 2005, Chapter 2) and the ref-
erence therein for further discussions of this one pa-
rameter family of normalized graph Laplacians which
includes (4).

For a given weight matrix W̃ , there are two other ver-
sions of graph Laplacian that are closely connected to
L̃r and will be used later. One is the unnormalized
graph Laplacian defined as

L̃u = D̃ − W̃ (5)

and the other is symmetric normalized graph Lapla-
cian

L̃s = D̃−1/2L̃uD̃−1/2 = I − D̃−1/2W̃ D̃−1/2 (6)
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The right eigenvectors of L̃r are same as those in the
generalized eigenfunctions problem as follows

L̃uφi = λiD̃φi (7)

It is easy to see that L̃r = D̃−1L̃u. The eigenvectors
of L̃s and the right eigenvectors of L̃r have a one to
one mapping. If vr,i is a right eigenvector of L̃r with
eigenvalue λi, then vs,i = D̃1/2vr,i is an eigenvector of
L̃s with the same eigenvalue λi (von Luxburg, 2007).

2.2 Laplacian Eigenmaps SSL

The variant of Laplacian Eigenmaps SSL (Belkin and
Niyogi, 2004, but with a modified normalization) we
study proceeds as follows: Given the labeled and unla-
beled data, and a parameter k, we first find the leading
k right eigenvectors vr,1, . . . , vr,k of the two-step nor-
malized Laplacian L̃r, with the smallest eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λk. Here and throughout we take
the eigenvectors to be normalized s.t. ‖vr,j‖u = 1. We
then perform an ordinary (unregularized) least squares
regression in the k-dimensional space obtained by the
mapping xi 7→ (vr,1(xi), vr,2(xi), · · · , vr,k(xi)), where,
continuing to represent vectors as functions, vr,j(xi) is
the coordinate of vr,j corresponding to data point xi.
More explicitly, we find the least squares predictor

β̂ = arg min
β

n∑

i=1

(yi −
k∑

j=1

βjvr,j(xi))2

and predict f̂(xi) =
∑k

j=1 β̂jvr,j(xi).

3 Limit of Infinite Unlabeled Data

In this section we consider the limit of the two-step
normalized Laplacian L̃r (defined in equation 4) and of
the graph Laplacian regularizer fT L̃uf as the number
of unlabeled points goes to infinity.

3.1 Graph Laplacian with Infinite Data

As the number of unlabeled points goes to infinite,
the empirical Laplacian converges to a well defined
weighted Laplacian (Hein et al., 2005; Coifman and
Lafon, 2006; Belkin and Niyogi, 2008). When t → 0
as u → ∞ at an appropriate rate (Hein et al., 2005,
Theorem 3), for any smooth function f(x) and any
x ∈ Ω/∂Ω, up to a constant scaling1:

L̃rf(x)
td/2+1

a.s.→ ∆̃rf(x) = −∆f(x)− 1
p(x)

〈∇p(x),∇f(x)〉
1Here and elsewhere, these convergences of a discrete

vector, on the left hand side, to a continuous function, on
the right hand side, should be interpreted as follows: fix
x ∈ Ω/∂Ω and consider a sample of u points consisting of x
and u−1 other points chosen i.i.d. (equivalently, condition
on random samples which include x). The left hand side is

where ∆ is the regular Laplace operator defined as the
following in RN :

∆ =
N∑

i=1

∂2

∂x2
i

.

Let φi be the ith right eigenfunction of ∆̃r, and λi be
the associated eigenvalue. Since the limit operator ∆̃r

includes a density dependent drifting term, the mea-
sure under which φi are orthogonal needs to be clari-
fied. In order to do this, it is useful for us to consider
its symmetric counterpart L̃s. Since L̃s is symmetric,
it has u real valued eigenvalues and the corresponding
eigenvectors form an orthogonal basis of Ru. Since all
the eigenvector vsi

are orthogonal, then by the one to
one mapping vs,i = D̃1/2vr,i (vr,i is right eigenvector
of L̃r and vs,i is the eigenvector of L̃s), we have the
following for i 6= j:

〈vr,i, vr,j〉u = 〈D̃−1/2vs,i, D̃
−1/2vs,j〉u = vT

s,iD̃
−1vs,j

That is, the eigenvectors of L̃r are only orthogonal
w.r.t. the D̃-inner product. Therefore, by finding the
limit of the degree function D̃(i, i), we can obtain the
weighting under which φi are orthogonal. Let

d̃t,u(Xi) = D̃(i, i) =
u∑

j=1

w̃ij

By (Hein, 2005, Proposition 2.33), up to a constant
scaling, for all x ∈ Ω/∂Ω:

1
utd/2

d̃t,u(x) a.s.−→ d̃(x) = 1 (8)

From the orthogonality of eigenvectors of L̃s, we
can see that if ψi are the eigenfunctions of the
limit operator of L̃s, then

∫
Ω

ψi(x)ψj(x)p(x)dx = 0.
This means for eigenfunctions of the limit of L̃r,∫
Ω

φi(x)φj(x)d̃(x)p(x)dx = 0. Since d̃(x) = 1, we can
obtain the following orthogonality lemma for the right
eigenfunctions of ∆̃r:

Lemma 1. Let φi(x) be the ith right eigenfunction of
∆̃r, then for i 6= j

〈φi, φj〉L2(p) =
∫

Ω

φi(x)φj(x)p(x)dx = 0

We will further normalize φi such that ‖φi(x)‖L2(p) =
〈φi, φi〉L2(p) = 1.

Note that the result (8) is not necessarily true for x
on the boundary ∂Ω, where the degree function d̃(x)

then the random variable corresponding to the appropriate
coordinate of L̃rf , and we state its convergence, almost
surely, to the value of the function ∆̃rf at x.
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converges to a different constant. However, the limit
d̃(x) will be finite (Coifman and Lafon, 2006, Lemma
9). Since the boundary has zero measure, this does
not affect the integral in Lemma 1.

Boundary Condition An important point that will
be used later is that when the domain Ω has non-
empty boundary, the eigenfunctions φi of ∆̃r auto-
matically satisfy the Neumann boundary condition
(Nadler et al., 2006):

∂φi(x)
∂n

= 0 (9)

where n is the normal direction to the boundary ∂Ω
at x.

3.2 Limit of Graph Laplacian Regularizer

We also consider the limit of the graph Laplacian reg-
ularizer fT L̃uf as the number of unlabeled points u
goes to infinity. When t → 0 at an appropriate rate
as u → ∞, then the (scaled) discrete regularizer con-
verges to the appealing limit (Hein, 2005, Theorem
2.43):

1
u2td/2+1

fT L̃uf
a.s.−→ Jp(f) =

∫

Ω

|∇f(x)|2p(x)dx

(10)
where

|∇f(x)|2 = 〈∇f(x),∇f(x)〉 =
N∑

i=1

(
∂f(x)
∂xi

)2

Note that in the limit the norm of the gradient is
weighted by the density p(x), rather then by the
squared density p2(x), as is the case for unnormalized
graph Laplacian Lu = D − W shown by (Bousquet
et al., 2004).

3.3 Laplacian Eigenmap SSL with Infinite
Unlabeled Data

As our interest here is in the behavior in the limit of
infinite unlabeled data, we analyze here the Laplacian
Eigenmaps SSL method based on the limit weighted
Laplacian discussed above. That is, instead of re-
lying on an unlabeled sample we consider the case
where we have the marginal p(x) and use the weighted
Laplacian ∆̃r. Specifically, given the marginal p(x),
n labeled points (x1, y1), . . . , (xn, yn) and parameter
k, we consider using the leading k right eigenfunctions
φ1, . . . , φk with the smallest eigenvalues λ1 ≤ · · · ≤ λk,
and solving the following least squares problem:

β̂ = arg min
β

n∑

i=1

(yi −
k∑

j=1

βjφj(xi))2.

Predictions are then given by

f̂(x) =
k∑

j=1

β̂jφj(x) (11)

4 Error Analysis

In this section, we decompose the overall integrated
mean squares error (IMSE) of Laplacian Eigenmaps
SSL into two types of error, given infinite unlabeled
data. Define Laplacian Eigenmaps space

Sk = {f : f =
k∑

i=1

αiφi, αi ∈ R, |αi| < ∞}

Firstly, we use a function fk ∈ Sk from the subspace
spanned by the first k eigenfunctions to approximate
the regression function f ∈ C1, which potentially lives
in an infinite dimensional space. This generates the
finite dimension function approximation error between
C1 and Sk, i.e. inffk∈Sk

‖f − fk‖2L2(p).

Secondly, we also need to use least squares to estimate
another function f̂k to approximate fk given n labeled
points, which contributes another least squares error
‖f̂k − fk‖2L2(p), where f̂k depends on n.

In terms of the IMSE we have:

EXL,YL
[‖f − f̂k‖2L2(p)]

= EXL,YL
[‖f − fk + fk − f̂k‖2L2(p)]

≤ EXL,YL
[‖f − fk‖2L2(p)] + EXL,YL

[‖fk − f̂k‖2L2(p)]

Function f and fk are independent of sample data XL

and YL, while f̂k depends on XL and YL. Next we
study the two types of error individually.

4.1 Approximation Error

For an arbitrary bounded smooth density, the approx-
imation error between the spaces C1 and Sk is given
in the following theorem.

Theorem 2. For f ∈ C1(Ω) and a smooth density
p(x) such that 0 < a ≤ p(x) ≤ b < ∞, for k = 1, 2, · · · ,

inf
fk∈Sk

‖f − fk‖2L2(p) ≤
Jp(f)
λk+1

(12)

where λk+1 is the (k + 1)th eigenvalue of the weighted
Laplacian ∆̃r.

Proof. For f ∈ C1(Ω) on a compact domain Ω,
‖f‖2L2(p) < ∞ and Jp(f) < ∞. Since φi form
an orthogonal basis w.r.t. p(x), we can expand
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f as f =
∑∞

i=1 αiφi, where αi = 〈f, φi〉L2(p) =∫
Ω

f(x)φi(x)p(x)dx. Let fk =
∑k

i=1 αiφi and

rk = f − fk

By the orthogonality of φi,

〈rk, φi〉L2(p) = 0, for i = 1, · · · , k

Then by the minimum potential principle for λk+1:

λk+1 = min
〈g,φi〉=0 for i=1,··· ,k

‖∇g‖2L2(p)

‖g‖2L2(p)

≤
‖∇rk‖2L2(p)

‖rk‖2L2(p)

(13)

Now consider the integral

‖∇rk‖2L2(p) =
∫
Ω
|∇(f − fk)|2p(x)dx

=
∫
Ω
〈∇f(x)−∇fk(x),∇f(x)−∇fk(x)〉p(x)dx

=
∫
Ω
(|∇f(x)|2 + |∇fk(x)|2 − 2〈∇f,∇fk〉)p(x)dx

For the last term, by the Green’s identity
∫
Ω
〈∇f,∇fk〉p(x)dx

=
∫
Ω

f(x)∆̃rfk(x)p(x)dx +
∮

∂Ω
p(x)f(x)∇nfk(x)dx

=
∫
Ω

f(x)∆̃rfk(x)p(x)dx

The boundary integral vanishes since fk(x) is a finite
linear combination of φi(x) so it satisfies the Neumann
boundary condition. Then

∫
Ω

f(x)∆̃rfk(x)p(x)dx

=
∫
Ω
[
∑k

i=1 αiλiφi(x)][
∑∞

i=1 αiφi(x)]p(x)dx

=
∑k

i=1 α2
i λi

=
∫
Ω

fk(x)∆̃rfk(x)p(x)dx

=
∫
Ω
|∇fk(x)|2p(x)dx

therefore

‖∇rk‖2L2(p) =
∫
Ω
|∇(f − fk)|2p(x)dx

=
∫
Ω
(|∇f(x)|2 − |∇fk(x)|2)p(x)dx

≤ ∫
Ω
|∇f(x)|2p(x)dx = ‖∇f‖2L2(p)

Together with equation (13),

λk+1 ≤
‖∇f‖2L2(p)

‖rk‖2L2(p)

⇒ ‖rk‖2L2(p) ≤
‖∇f‖2L2(p)

λk+1

From the proof we can see that fk is just f with the
tailing high frequency components cut off, or the out-
put of a low pass filter with input being f . This is
due to the completeness and orthogonality of Lapla-
cian eigenfunctions.

The message from this theorem is that Jp(f) together
with λk+1 determines the IMSE by using fk ∈ Sk to
approximate f ∈ C1. Even though if we use Jp(f) as
the limit of fT L̃uf (or other unnormalized or normal-
ized Laplacian) directly in the least squares problem,
the solutions degenerate (Nadler et al., 2009), it can
still be used as a complexity measure if we restrict so-
lutions to be from a finite dimension space Sk. This
also shows that choosing finite dimensional space Sk to
approximate an infinite dimensional space is another
way of regularization.

4.2 Least Squares Estimate Error

We now turn to the least squares estimation error
EX,YL

[‖fk − f̂k‖2L2(p)]. This is now a standard least
squares prediction problem with n observed labeled
in the k-dimensional linear space Sk, and we can ap-
ply standard distribution independent learning guar-
antees. For k ≥ 1, (Lee et al., 2002):

EXL,YL
[‖fk − f̂k‖2L2(p)] ≤ CSk log(n

k )/n

≤ CSk log(n)/n

where CS is a constant independent of k and n.

4.3 Error for Laplacian Eigenmaps SSL

The total error for Laplacian Eigenmaps SSL is
bounded by the summation of the two types of error,
which is

EX,YL
[‖f − f̂k‖2L2(p)]

≤ EX,YL
[‖f − fk‖2L2(p)] + EX,YL

[‖fk − f̂k‖2L2(p)]

= Jp(f)
λk+1

+ CSk log(n)
n

This error bound is for any integer n ≥ 1 and k ≥ 1.
Next by balancing the two terms, we show the opti-
mal asymptotic k, and the corresponding optimal error
rate.

5 Optimal Error Rate

We now turn to studying the asymptotics of the Lapla-
cian Eigenmaps SSL as the number of labeled points
increases. Note that we still consider the number of
unlabeled points as infinite, and refer to the Infinite



Error Analysis of Laplacian Eigenmaps for Semi-supervised Learning

Unlabeled Data Laplacian SSL, but now also consider
the scaling of the error and the optimal choice of k as
the numbered of labeled points n increases.

The next theorem shows the optimal number of Lapla-
cian eigenfunctions that should be used, and the cor-
responding optimal IMSE.

Theorem 3. Given infinite unlabeled points, for re-
gression function f ∈ C1, and the least squares es-
timator (11) on a compact domain Ω with intrinsic
dimension d, the optimal k and the corresponding op-
timal integrated mean squares error rate are

k∗ = ( 2Jp(f)
dCWCS

n
log(n) )

d
d+2 ∼ O(( n

log(n) )
d

d+2 )

IMSE∗ = ( n
log(n) )

− 2
d+2 [(Jp(f)

CW
)( 2Jp(f)

dCWCS
)−

2
d+2 +

CS( 2Jp(f)
dCWCS

)
d

d+2 ]

∼ O(( n
log(n) )

− 2
2+d )

(14)
where CW is the Weyl constant defined by CW =
CW(d,Vol(Ω)) = d

d+1
4π2

(ωdVol(Ω))2/d and ωd is the vol-
ume of a unit ball in Rd. CS is the constant coefficient
from least squares estimate error bound of f .

Proof. From the following total error we can see that,
in order to study the asymptotic behavior, we need to
find the asymptotics for λk.

Jp(f)
λk+1

+
CSk log(n)

n

By the Weyl’s asymptotic formula for eigenvalues of
Laplacian ∆ on either Rd or a manifold with intrin-
sic dimension d (Safarov and Vassiliev, 1997), we have
λk ∼ CWk

2
d . For weighted Laplacian ∆̃r with ar-

bitrary smooth bounded density, we can not use the
Weyl’s formula directly. However, for a self-adjoint dif-
ferential operator, the leading term of the asymptotics
of its eigenvalues is determined by the highest order
differential operator term of this operator (Safarov and
Vassiliev, 1997). For a self-adjoint weighted Laplacian
∆̃r = −∆ − 1

p 〈∇p,∇〉 with a smooth and bounded
density p(x), the highest order differential operator is
just the regular Laplacian, then the asymptotic for the
eigenvalues of ∆̃r is the same as

λk ∼ CWk
2
d

Therefore, either on a compact domain of Rd or a d
dimensional manifold, with arbitrary bounded smooth
density, we have

EXL,YL
[‖f − f̂k‖2L2(p)] ≤

Jp(f)
CWk

2
d

+
CSk log(n)

n

By balancing the two terms as a function of k, we can
find the minimum by taking derivatives w.r.t. k to
obtain the optimal k. Plugging the optimal k into the
overall error leads to the optimal IMSE error rate.

This theorem provides insights into the choice of the
number of eigenvectors k of the graph Laplacian to
use. When the intrinsic dimension of Ω is d, the op-
timal choice of k scales as (n/ log(n))d/(d+2) where n
is the number of labeled points. Note the sub-linear
dependence on n (also depending on the dimensional-
ity) as opposed to the linear choice k = n/5 originally
suggested.

Interestingly, with this optimal choice of k, and with
infinite unlabeled points, Laplacian Eignmaps SSL
achieves the same IMSE rate of n−2/(d+2) as the
asymptotically optimal rate for nonparametric regres-
sions in the d-dimensional intrinsic space, up to a log-
arithmic factor.

In this theorem, IMSE is considered. By replacing the
IMSE with conditional mean square error (MSE) on
XL, the optimal k and the conditional MSE rate are

k∗ ∼ O(n
d

d+2 )

MSE∗ ∼ O(n−
2

2+d )
(15)

In this case, the optimal conditional MSE achieves the
optimal rate as local polynomials on the d-dimensional
unknown manifolds (Bickel and Li, 2007).

6 Analysis for Cm Functions

For simplicity, we assume the underlying probability
density is uniform in this section. Based on above anal-
ysis we can see that the approximation error bound can
be easily generalized to m times differentiable func-
tions. For function f ∈ Cm, define

Jd
m(f) =

∑
|α|=m

m!
α1!···αd!

∫
Ω
( ∂mf(x)

∂x
α1
1 ···∂x

αd
d

)2dx

=
∑
|α|=m

(
m
α

)‖Dmf‖2L2

where

Dαf =
∂|α|f

∂x
α1
1 ∂x

α2
2 · · · ∂x

αd

d

By the following classic relation, see e.g., (Chapter 6,
Berlinet and Thomas-Agnan, 2003)

∆m =
∑

|α|=m

(
m

α

)
D2α

with proper boundary conditions, we can obtain the
following important relation

Jd
m(f) =

∫

Ω

f(x)∆mf(x)dx
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The corresponding semi-norm in Fourier basis form is∑∞
i=1 α2

i λ
m
i , where αi = 〈f, φi〉L2(p), see e.g., (Taylor,

1996). Since λi is increasing, then it is not difficult
to see that the first error, finite dimension function
approximation error becomes

EXL,YL
[‖f − fk‖2L2(p)] ≤

Jd
m(f)
λm

k+1

Since ∆ and ∆m share the same eigenfunctions, and
when λi is the eigenvalue of ∆, λm

i is the eigenvalue of
∆m. Next theorem generalizes results of theorem (3)
from C1 functions to Cm functions
Theorem 4. Given infinite unlabeled points, for re-
gression function f ∈ Cm, and the least squares esti-
mator (11)on a compact domain Ω with intrinsic di-
mension d, the optimal k and the corresponding opti-
mal mean squares error rate are

k∗ = ( 2mJd
m(f)

dCWCS
n

log(n) )
d

d+2m ∼ O(( n
log(n) )

d
d+2m )

MSE∗ = ( n
log(n) )

− 2m
d+2m [Jd

m(f)
CW

)( 2mJd
m(f)

dCWCS
)−

2m
d+2m +

CS( 2mJd
m(f)

dCWCS
)

d
d+2m ]

∼ O(( n
log(n) )

− 2m
2m+d )

(16)
where CW is the Weyl constant defined by CW =
CW(d,Vol(Ω)) = d

d+1
4π2

(ωdVol(Ω))2/d and ωd is the vol-
ume of unit ball in Rd. CS is the constant coefficient
from least squares estimate error bound of f .

This theorem generalizes previous results to even
smoother functions. The IMSE rate, up to a loga-
rithmic factor, achieves the optimal error rate of non-
parametric regressions for Cm functions. Compared
to the results of m = 1, if m is large, the optimal k
will scale slower than m = 1 case. We can possibly use
much less eigenfunctions to achieve the optimal error.
Similar results also hold for the conditional MSE.

7 Discussion

Comparison to Local Polynomial Regression
Local polynomial regression is recently shown to be
able to achieve the same conditional MSE convergence
rate n−

2m
2m+d for m times differentiable functions on a

d-dimensional manifold, without estimating the mani-
fold (Bickel and Li, 2007). This is not surprising con-
sidering “locally, the geodesic distance is roughly pro-
portionate to the Euclidean distance”. Compared to
Laplacian Eigenmaps SSL, the most important advan-
tage of local polynomial regression is that it does not
need to estimate the manifold.

However, the cost of avoiding the estimation of man-
ifolds is the optimal window bandwidth selection and

local dimension estimation. For relatively large d, with
extremely sparse data points, either of these problems
can be easily solved. Moreover, for larger m, free pa-
rameters to be estimated for polynomials increase fast
as d increases, which adds another difficulty for it to
be a practical algorithm. Another difference is that
local polynomial regression is a supervised learning al-
gorithm, while Laplacian Eigenmaps SSL is a trans-
ductive SSL algorithm using density adaptive basis.

Comparison to Regression Splines in Finite Di-
mension Subspaces
Regression using the first k eigenfunctions can be seen
as approximating functions in finite dimensional sub-
spaces, which can be compared to regression splines
in finite dimension subspaces, see e.g., (Wahba, 1990,
Chapter 7). When d = 1, our optimal k ∼ O(n

1
1+2m ) is

the same as splines regression over 1-dimensional inter-
vals, and achieves the same IMSE (both up to log(n)),
O(n−

2m
2m+1 ), as shown by Agarwal and Studden (1980).

Our analysis also shows that Laplacian Eigenmaps SSL
achieves the same error rate using the same optimal
dimensions compared to least squares estimates us-
ing tensor product spline spaces with equidistant knots
(Chapter 15.3, Györfi et al., 2002).

Laplacian Eigenmaps Space
Given Laplacian Eigenmaps space Sk, if we use an-
other learning algorithm in this k-dimensional space
that minimizes the mean squares error, we can plug
in the corresponding error rates to obtain the optimal
dimension k and error rate, which can be potentially
improved by a logarithmic factor, achieving the exact
optimal nonparametric regression rate.

Normalized Graph Laplacian
In this paper, we use a two-step normalized graph
Laplacian. In fact, there is a family of one parame-
ter normalized graph Laplacian (Coifman and Lafon,
2006; Hein et al., 2005), which is defined as follows:
first normalize weight matrix as W̃α = D−αWD−α,
then the graph Laplacian is L̃α = I − D̃−1

α W̃α. Simi-
larly, for each α, there are unnormalized, random walk
normalized and symmetric normalized graph Lapla-
cians. Then a similar analysis follows easily. The only
difference is that the measure for the L2 error is not
p(x) anymore, instead, it will be [p(x)]2−2α.

Finite Unlabeled Points Analysis
In this paper, we considered the “Laplacian Eigenmaps
SSL with Infinite Unlabeled Data” where we projected
the data onto the leading eigenfunctions of the limit
operator of a normalized graph Laplacian. This leaves
open an important issue of the convergence of the
Laplacian Eigenmaps to this infinite data limit, and
in particular the rate of this convergence. Although
convergence of the operator is well understood, we are
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not aware of a rigorous analysis for the convergence
rate of the eigenvectors of a graph Laplacian to the
eigenfunctions of its limit operator. Such an analy-
sis is crucial for applying the results obtained here
to obtain specific guarantees with finite amounts of
unlabeled data. Nevertheless, we consider this “infi-
nite unlabeled data” analysis useful at understanding
the Laplacian Eigenmaps SSL method, and point out
that a convergence result on the eigenvectors, when
obtained, could be combined with our analysis to ob-
tain a full understanding of Laplacian Eigenmaps SSL
error rate as a function of the number of labeled and
unlabeled points.
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