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Dimensionality Reduction:
Low dimensional representation capturing 
important aspects of high dimensional data

observations small representation 
yy u

image varying aspects of scene
gene expression levels description of biological process

a user’s preferences characterization of user
document topics

• Compression (mostly to reduce processing time)
• Reconstructing latent signal

– biological processes through gene expression
• Capturing structure in a corpus

– documents, images, etc
• Prediction: collaborative filtering



Linear Dimensionality Reduction
× v1u1yy
×+ v2u2

+ × v3u3



Linear Dimensionality Reduction
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preferences of a specific user
(real-valued preference level 

for each title)
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Linear Dimensionality Reduction
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Matrix Factorization
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rank k
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• Non-Negativity [LeeSeung99]

• Stochasticity (convexity) [LeeSeung97][Barnett04]

• Sparsity
– Clustering as an extreme (when rows of U sparse)

• Unconstrained: Low Rank Approximation



Matrix Factorization
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• Additive Gaussian noise minimize |Y-UV’|Fro
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Matrix Factorization

V’YY
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i.i.d.
p(Zij)
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• Additive Gaussian noise minimize |Y-UV’|Fro

• General additive noise minimize ∑ -log p(Yij-UV’ij)



Matrix Factorization

• Additive Gaussian noise minimize |Y-UV’|Fro

• General additive noise minimize ∑ -log p(Yij-UV’ij)
• General conditional models minimize ∑ -log p(Yij|UV’ij)

– Multiplicative noise
– Binary observations: Logistic LRA
– Exponential PCA [Collins+01]

– Multinomial (pLSA [Hofman01])
• Other loss functions [Gordon02] minimize ∑loss(UV’ij;Yij)

V’YY
datadata U

×

p(Yij|UV’ij)



The Aspect Model (pLSA)

YY
coco--occurrenceoccurrence

countscounts

I
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word
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topic 
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p(j|t)

p(i,t)

[Hoffman+99]
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document

Y|X ∼ Multinomial(N,X)

Yij|Xij ∼ Binomial(N,Xij)

N=∑ Yij



Logistic Low Rank 
Approximation

[Schein+03]

Yij|Xij~Bin(N,g(Xij))Sufficient 
Dimensionality 
Reduction
[Globerson+02]

Natural 
parameterization
unconstrained Xij

P(Yij=1) = XijYij|Xij~Bin(N,Xij)Aspect Model 
(pLSA) [Hoffman+99]

Mean 
parameterization
0 · Xij · 1
E[Yij|Xij]=Xij

Independent 
Bernoulli

Independent 
Binomials

Multinomial

≡ NMF if ∑Xij=1 ≈ NMF [Lee+01]

hinge
loss

≈

Low-Rank Models for Matrices of 
Counts, Occurrences or Frequencies

p(Yij|Xij) ∝ exp(YijXij+F(Yij))
Exponential PCA: [Collins+01]

g(x)=1/(1+ex)



Outline
• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank Approximation
When more data is available, do we converge to correct 

solution?  Not always…

• Matrix Factorization for Collaborative Filtering
– Maximum Margin Matrix Factorization
– Generalization Error Bounds (Low Rank & MMMF)



Finding Low Rank Approximation
Find rank-k X minimizing ∑loss(Xij;Yij) (=log p(Y|X))

• Non-convex:
– “X is rank-k” is a non-convex constraint
– ∑loss((UV)ij;Yij) not convex in U,V

• rank-k X minimizing ∑(Yij-Xij)2:
– non-convex, but no (non-global) local minima
– solution: leading components of SVD

• For other loss functions, or with missing data:
cannot use SVD, local minima, difficult problem

• Weighted Low Rank Approximation:
minimize ∑Wij(Yij-Xij)2

Arbitrarily specified weights
(part of input)



WLRA: Optimization
∑ −=
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For fixed V, find optimal U
For fixed U, find optimal V
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Conjugate gradient descent on J*
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X←LowRankApprox(W⊗Y+(1-W)⊗X)

elementwise
productEM approach:



Newton Optimization for
Non-Quadratic Loss Functions

minimize ∑ijloss(Xij;Yij)
loss(Xij;Yij) convex in Xij

• Iteratively optimize quadratic 
approximations of objective

• Each such quadratic optimization is a 
weighted low rank approximation



Maximum Likelihood Estimation 
with Gaussian Mixture Noise
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Outline
• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank Approximation
When more data is available, do we converge to correct 

solution?  Not always…

• Matrix Factorization for Collaborative Filtering
– Maximum Margin Matrix Factorization
– Generalization Error Bounds (Low Rank & MMMF)



Asymptotic Behavior of
Low Rank Approximation

YY ZX
parameters

rank k

random

independent
= +

Single observation,
Number of parameters is linear in number of observables

Can never approach correct estimation of parameters

What can be estimated is row-space of X
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Number of parameters is linear in number of observables

What can be estimated is row-space of X
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What can be estimated is row-space of X



V×

What can be estimated is row-space of X

Multiple samples of random variable y

uyy z= +



Probabilistic PCA

V×uyy z

Gaussian

~= +
Gaussian

~

σ2IΣX
rank k

x
Gaussian

~
estimated 

parameters
estimated 

parameters

Maximum likelihood ≡ PCA
[Tipping Bishop 97]



Probabilistic PCA

V×uyy z= +
Gaussian(σ2I)

~

Gaussian

~

estimated 
parameters
estimated 

parameters

V×uyy ~ ~Multinomial( N,                                   )

Latent Dirichlet Allocation
[Blei Ng Jordan 03]

[Tipping Bishop 97]

Dirichlet(α)

estimated 
parameters
estimated 

parameters



Generative and Non-Generative
Low Rank Models

Y=X+Gaussian “Probabilistic PCA”

pLSA,
Y~Binom(N,X) Latent Dirichlet Allocatoin

Parametric generative models:
Consistency of Maximum Likelihood 

estimation guaranteed
if model assumptions hold

(both on Y|X and on U)

Non-parametric
generative models



estimated parameters
row-space of V,
not entries of V

V×uyy z

Gaussian

~= +

xPU

nonparametric,
unconstrained 

nuisance

Non-parametric model,
estimation of a parametric part of the model
Maximum Likelihood ≡ “Single Observed Y”



Consistency of ML Estimation
true V

estimated V



Consistency of ML Estimation

[ ]))((logmax);( uVzxpExV Zuz −+=Ψ

ML estimator is consistent
for any Pu

);( xVΨ
for all x,

V maximizes                
iff V spans x

x
expected 

contribution of x to 
likelihood of V

When Z~Gaussian, =Ψ );( xV E[L2 distance of x+z from V]

V

For iid Gaussian noise, ML estimation (PCA) 
of the low-rank sub-space is consistent



Consistency of ML Estimation
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Consistency of ML Estimation
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Consistency of ML Estimation

expected 
contribution of x to 

likelihood of V

X=UV’
General conditional model for Y|X
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);( xVΨ
for all x,

V maximizes                
iff V spans x

ML estimator is consistent
for any Pu

is constant for all V
)0;(VΨML estimator is consistent

for any Pu



Consistency of ML Estimation
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Consistent Estimation
• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistent
PCA is consistent (for any noise distribution)

ΣX + σ2IΣŶ
Span of k leading 
eigenvectors of 

rank k



Consistent Estimation
• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistent
PCA is consistent (for any noise distribution)

ΣY = ΣX + ΣZ = ΣX + σ2IΣŶ

s1, s2, …, sk, 0, 0, …, 0

s1+σ2, s2+σ 2, …, sk+σ2, σ2, σ2, …, σ2



Consistent Estimation
• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistent
PCA is consistent (for any noise distribution)
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Consistent Estimation
• Additive i.i.d. noise Y=X+Z:

Maximum Likelihood generally not consistent
PCA is consistent (for any noise distribution)

• Unbiased noise E[Y|X]=X:
Maximum Likelihood generally not consistent
PCA not consistent

-- Can correct by ignoring diagonal of covariance

• Exponential PCA (X are natural parameters)
Maximum Likelihood generally not consistent
Covariance methods not consistent
??????



Outline
• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank Approximation
When more data is available, do we converge to correct 

solution?  Not always…

• Matrix Factorization for Collaborative Filtering
– Maximum Margin Matrix Factorization
– Generalization Error Bounds (Low Rank & MMMF)



Collaborative Filtering
Based on preferences so far, and preferences of others:
⇒ Predict further preferences

movies Implicit or explicit preferences?

Type of queries.

2 1 4 5

4 1 3 5

5 4 1 3
3 5 2

4 5 3

2 1 4
1 5 5 4

2 5 4
3 3 1 5 2 1
3 1 2 3
4 5 1 3

3 3 5
2 1 1

5 2 4 4
1 3 1 5 4 5

1 2 4 5

us
er

s



Matrix Completion
Based on partially observed matrix:

⇒ Predict unobserved entries “Will user i like movie j?”
movies

2 1 4 5

4 1 3 5

5 4 1 3
3 5 2

4 5 3

2 1 4
1 5 5 4

2 5 4
3 3 1 5 2 1
3 1 2 3
4 5 1 3

3 3 5
2 1 1

5 2 4 4
1 3 1 5 4 5

1 2 4 5

?

? ?

?

? ?

?
?

?

?

us
er

s



Matrix Completion with
Matrix Factorization

Fit factorizable (low-
rank) matrix X=UV’
to observed entries.

minimize Σloss(Xij;Yij)

Use matrix X to 
predict unobserved 
entries.

V’
2 1 4 5

4 1 3 5

5 4 1 3
3 5 2

4 5 3

2 1 4
1 5 5 4

2 5 4
3 3 1 5 2 1
3 1 2 3
4 5 1 3

3 3 5
2 1 1

5 2 4 4
1 3 1 5 4 5

1 2 4 5

?

? ?

?

? ?

?
?

?

?

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

U
observationprediction

[Sarwar+00] [Azar+01] [Hoffman04] [Marlin+04]



Matrix Completion with
Matrix Factorization

When U is fixed,
each row is a linear 
classification problem:
•rows of U are feature 
vectors
•columns of V are linear 
classifiers

Fitting U and V:
Learning features that 
work well across all 

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
v11
v12

U

-1.51.3 0.4

-4.88.3 2.5

3.40.7 -0.2

1.61.7 -5.2

0.9-3.7 2.1

2.74.3 -0.5

6.44.7 0.2

-5.86.0 0.3

-1.5

-4.8

3.4

1.6

0.9

2.7

6.4

-5.8

0.4

2.5

-0.2

-5.2

2.1

-0.5

0.2

0.3

1.3

8.3

0.7

1.7

-3.7

4.3

4.7

6.0

classification problems.



Max-Margin Matrix Factorization

Instead of bounding 
dimensionality of U,V, 
bound norms of U,V

-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

low normlow norm

‹Ui,Vj›

For observed Yij ∈ ±1:
Yij Xij ≥ Margin



-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

low normlow norm

‹Ui,Vj›

For observed Yij ∈ ±1:
Yij Xij ≥ Margin

(maxi|Ui|2) (maxj|Vj|2) · 1

(∑i |Ui|2) (∑j |Vj|2) · 1

Max-Margin Matrix Factorization

U is fixed:
each column of V is SVM

bound norms on average:

bound norms uniformly:



-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

low normlow norm

‹Ui,Vj›

For observed Yij ∈ ±1:
Yij Xij ≥ Margin

(maxi|Ui|2) (maxj|Vj|2) · 1

(∑i |Ui|2) (∑j |Vj|2) · 1

Max-Margin Matrix Factorization

U is fixed:
each column of V is SVM

bound norms on average:

bound norms uniformly:



-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

Geometric Interpretation
columns of V

(items)
rows of U

(users)

(maxi|Ui|2) (maxj|Vj|2) · 1
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+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

V

U

Geometric Interpretation
columns of V

(items)
rows of U

(users)

(maxi|Ui|2) (maxj|Vj|2) · 1



Finding Max-Margin Matrix Factorizations

(maxi|Ui|2) (maxj|Vj|2) · 1(∑i |Ui|2) (∑j |Vj|2) · 1
X=UVX=UV

maximize Mmaximize M
Yij Xij ≥ MYij Xij ≥ M

Unlike rank(X) · k, these are convex constraints!



Finding Max-Margin Matrix Factorizations

X
-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

Y
-1 -1 +1 +1

+1 -1-1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

QQ
maximize M
Yij Xij ≥ M

X=UV
(∑i |Ui|2) (∑j |Vj|2) · 1

|X|tr = ∑ (singular values of X)

Dual variable Qij for each observed (i,j)

maximize ∑ Qij

BX’
XA p.s.d.

minimize tr(A)+tr(B)
Yij Xij ≥ 1

+ c ∑ξij

- ξij 0 · Qij · c

||Q ⊗ Y||2 · 1

sparse elementwise product 
(zero for unobserved entries)



Finding Max-Margin Matrix Factorizations

• Semi-definite program with sparse dual:
Limited by number of observations, not size

(for both average-norm and max-norm)

• Current implementation: use CSDP (off-the-shelf solver), 
up to 30k observations (e.g. 1000x1000, 3% observed)

• For large-scale problems: updates on dual alone ?
Dual variable Qij for each observed (i,j)

maximize ∑ Qij

BX’
XA p.s.d.

minimize tr(A)+tr(B)
Yij Xij ≥ 1

+ c ∑ξij

- ξij 0 · Qij · c

||Q ⊗ Y||2 · 1

sparse elementwise product 
(zero for unobserved entries)



Loss Functions for Rankings

Xij

0
Yij=+1

lo
ss

(X
ij;Y

ij)



Loss Functions for Rankings

Xij

θ1 θ2 θ6θ5θ4θ3

765421 3Yij =

lo
ss

(X
ij;Y

ij)



Loss Functions for Rankings

XijYij=3
θ1 θ2 θ6θ5θ4θ3

Immediate-threshold loss

lo
ss

(X
ij;Y

ij)

[Shashua Levin 03]

all-threshold loss

• All-threshold loss is a bound on the absolute rank-difference
• For both loss functions: learn per-user θ’s



Experimental Results on 
MovieLens Subset

all 
threshold                    

MMMF

immediate 
threshold 

MMMF

K-medians 
K=2 Rank-1 Rank-2

Rank 
Difference 0.670 0.715 0.674 0.698 0.714

Zero One 
Error 0.553 0.542 0.558 0.559 0.553

100 users × 100 movies subset of MovieLens,
3515 training ratings, 3515 test ratings 



Outline
• Finding Low Rank Approximations

– Weight Low Rank Approx: minimize ∑ijWij(Yij-Xij)2

– Use WLRA Basis for other losses / conditional models

• Consistency of Low Rank Approximation
When more data is available, do we converge to correct 

solution?  Not always…

• Matrix Factorization for Collaborative Filtering
– Maximum Margin Matrix Factorization
– Generalization Error Bounds (Low Rank & MMMF)



Generalization Error Bounds

D(X;Y) = ∑ij loss(Xij;Yij)/nm
generalization error

Assuming a low-rank structure (eigengap):
Asymptotic behavior [Azar+01]

Sample complexity, query strategy [Drineas+02]

X

-1 -1 +1 +1

+1 -1 -1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

Y
unknown, 

assumption-free



Generalization Error Bounds

D(X;Y) = ∑ij loss(Xij;Yij)/nm
generalization error

DS(X;Y) = ∑ij∈S loss(Xij;Yij)/|S|
empirical error

-1 -1 +1 +1

+1 -1 -1 +1

+1 +1 -1 -1
-1 +1 +1

+1 +1 -1

-1 -1 +1
-1 +1 +1 +1

-1 +1 +1
+1 +1 -1 +1 -1 -1
+1 -1 -1 +1
+1 +1-1 +1

-1 -1 +1
-1 -1 -1

+1 -1 +1 +1
-1 -1 -1+1 +1 +1

-1 -1 +1 +1

X Y
SS

random

unknown, 
assumption-free

∀Y PrS ( ∀rank-k X D(X;Y)<DS(X;Y)+ε ) > 1-δ

training 
set

source 
distribution

hypothesis



Generalization Error Bounds
0/1 loss: loss(Xij;Yij) = 1 when sign(Xij)≠Yij

D(X;Y) = ∑ij loss(Xij;Yij)/nm
generalization error

DS(X,Y) = ∑ij∈S loss(Xij;Yij)/|S|
empirical error

loss(Xij;Yij) ∼ Bernoulli(D(X;Y))For particular X,Y:

Pr( DS(X;Y) < D(X;Y)-ε ) < e-2|S|ε2randomrandom

random
Union bound over all possible Xs:

∀Y PrS ( ∀X D(X,Y)<DS(X,Y)+ε ) > 1-δ

||2
loglog)( 18

S
mnk k

em
δε

++
=

log(# of possible Xs)



Number of Sign Configurations of Rank-k Matrices

-0.36 -0.00 -0.98 -1.36 -0.26
-0.07 -0.24 -1.14 -0.82 -0.12
0.19 -0.44 -1.27 -0.34 0.01
-0.81 0.84 1.17 -1.07 -0.35
-0.48 0.21 -0.43 -1.28 -0.28
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{ x | ∀i Pi(xWarren (1968): The number of connected components of ) ≠ 0 }

Xi,j = ∑r Ui,r Vr,j
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Based on [Alon95]
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Generalization Error Bounds:
Low Rank Matrix Factorization

D(X;Y) = ∑ij loss(Xij;Yij)/nm
generalization error

DS(X,Y) = ∑ij∈S loss(Xij;Yij)/|S|
empirical error

∀Y PrS ( ∀X of rank-k D(X,Y)<DS(X,Y)+ε ) > 1-δ

||2
loglog)( 18

S
mnk k

em
δε

++
=0/1 loss: loss(Xij;Yij) = sign(XijYij)

||
logloglog)(

6
1

)(
8

S
mnk mnk

S
k
em

δε
++

= +loss(Xij;Yij) · 1:
(by bounding the psudodimension)



Generalization Error Bounds:
Large Margin Matrix Factorization

D(X;Y) = ∑ij loss(Xij;Yij)/nm
generalization error

loss(Xij;Yij) = sign(XijYij) l

DS(X;Y) = ∑ij∈S loss1(Xij;Yij)/|S|
empirical error

oss1(Xij;Yij) = sign(XijYij-1)

∀Y PrS ( ∀X D(X,Y)<DS(X,Y)+ε ) > 1-δ

||
loglog)(ln

12
4

S
nmnRmK δε ++

=

universal constant from [Seginer00]
bound on spectral norm of random matrix

(∑ |Ui|2/n)(∑ |Vi|2/m) · R2:

||
log)(12

12

S
mnR δε ++

=(max |Ui|2)(max |Vj|2) · R2:



Maximum Margin Matrix Factorization
as a Convex Combination of Classifiers

{ UV | (∑ |Ui|2)(∑ |Vi|2) · 1 }
= convex-hull( { uv’ | u ∈ Rn, v ∈ Rm |u|=|v|=1} )

conv( { uv’ | u ∈ ±1n, v ∈ ±1m} ) 
⊂ { UV | (max |Ui|2)(max |Vj|2) · 1 }

⊂ 2 conv( { uv’ | u ∈ ±1n, v ∈ ±1m} )

Grothendiek's Inequality



Summary
• Finding Low Rank Approximations

– Weighted Low Rank Approximations
– Basis for other loss function: Newton, Gaussian mixtures

• Consistency of Low Rank Approximation
– ML for popular low-rank models is not consistent!
– PCA consistent for additive noise; diagonal ignoring for unbiased
– Efficient estimators?
– Consistent estimators for Exponential-PCA?

• Maximum Margin Matrix Factorization
– Correspondence with large margin linear classification
– Sparse SDPs for both avarage-norm and max-norm formulations
– Direct optimization of dual would enable large-scale applications

• Generalization Error Bounds for Collaborative Prediction
– First “assumption free” bounds for matrix completion
– Both for Low-Rank and for Max-Margin
– Observation process?
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