
CMSC 336: Type Systems for Programming Languages

Lecture 5: Simply Typed Lambda Calculus

Acar & Ahmed January 24, 2008

Contents

1 Solution to the Exercise 1
1.1 Semantics for lambda calculus . 1
1.2 De Bruijn Indices . 3

2 Introduction 4

3 Simply Typed Lambda Calculus 4

4 Types 5

5 Type Safety 9

6 Properties of Typing 9

1 Solution to the Exercise

1.1 Semantics for lambda calculus

The problem was to give a call by value and call by name semantics for lambda
calculus and show that both are deterministic.

Let’s try to give a semantics for lambda calculus and see how the different
evaluation strategies effect the decisions that we make.

As usual, let’s start by writing out the syntax for lambda terms.

t : : = x | λx.t | t1 t2

First, we need to determine what we consider a value. For both call-by-
value and call-by-name, lambda abstractions are values because no reductions
are allowed inside them. Note that in full beta-reduction and in the normal-
order strategy, we do not consider lambda abstractions as values, e.g., the term
λ x. (λ x. x) x is not a value, because there is a redex inside the abstraction.

We now consider each term and give evaluation rules for them. We don’t need
an evaluation rule for variables, because we don’t want to see a free (unbound)
variable during evaluation—that would be an error.

Consider lambda abstractions. They are values. Since we are giving a small-
step semantics, we need no rules for values.

Consider application, t1 t2. We know that we will apply beta reduction
when t1 is a lambda abstraction, i.e. t1 = λx.t. So we know what to do when

1

t1 is a value, we will simply apply beta reduction. If t1 is not a value, then we
will simply evaluate it recursively.

How about t2? Regardless of whether t2 is a value or not, we can always use
it in a beta reduction. So we have a choice to make here: we can apply beta
reduction immediately or evaluate t2 to a value first. This is where we consult
the evaluation strategy. In call-by-name, we apply beta reduction immediately.
In call by value we evaluate it.

Here is a possible call-by-value semantics.

t1 → t′1
t1 t2 → t′1 t2

t2 → t′2
t1 t2 → t1 t′2

(λx.t)v → [v/x] t

Here is a possible call-by-name semantics.

t1 → t′1
t1 t2 → t′1 t2

(λx.t) t2 → [t2/x] t

Is there anything strange with these?
Note that the call-by-value semantics is non-deterministic, because when we

have t1 t2, two rules apply. Since call-by-value semantics requires that both
parts of an application be values before applying beta reduction, we need to
figure which part we will reduce first. There is another choice to make here to
determine the evaluation order. Typically, we reduce the left part of the appli-
cation first. With this evaluation order, call-by-value corresponds to leftmost-
outermost evaluation.

Here is one of the two possible deterministic call-by-value semantics.

t1 → t′1
t1 t2 → t′1 t2

t2 → t′2
(λx.t1) t2 → (λx.t1) t′2

(λx.t)v → [v/x] t

We can now show that semantics is deterministic. We need to prove that if
t → t′ and t → t′′ then t′ = t′′. I will do the proof for call by value (the
case for call by name is symmetric). The proof is by induction on the depth of

2

the derivation trees of the two reductions. When the depth of the derivation is
1, we know that we have an application. Since there is only one rule that we
can possibly apply, the property holds. Suppose now that the property holds
for all derivation trees of depth d or less. Consider now a derivation tree with
depth d + 1 > 1. Consider now the last evaluation rules, if t = t1 t2 and t1
is a lambda abstraction, then by induction we know that t2 will be evaluated
deterministically and the lemma holds. If t1 is not a lambda term, then there
is only one rule to apply and the property holds by induction.

1.2 De Bruijn Indices

The de Bruijn notation of tru := λx.λy.x is λ.λ.1. The de Bruijn notation of
fls := λx.λy.y is λ.λ.0. The de Bruijn notation for pair := λx1.λx2.λy. y x1 x2

is λ.λ.λ.0 2 1.
For applying beta reduction in the de Bruijn notation, you needed to use

the formula for substitution given in your notes. To define substitution on de
Bruijn terms, we first need to define a shift operation that increases the indices
of all free “variables” by a specified number. To know what variables are free,
however, we need to know how deep we are in a term (in the abstract syntax
tree). This is specified by a cutoff constant c. In the formula below, d is specifies
by how much we want to shift the free variables.

↑d
c (i) = i if i < c

↑d
c (i) = i + d if i ≥ c

↑d
c (λ.t) = λ. ↑d

c+1 (t)

↑d
c (t1 t2) = (↑d

c (t1)) (↑d
c (t2))

We will write ↑i (t) to mean ↑i
0 (t).

Examples:

1. ↑2 (λ.λ.1(0 2)) =

2. ↑2 (λ.01(λ.0 1 2)) =

We define substitution as follows. Shifting during substation is necessary
to make sure that free variables of the substituted term still point to the same
variables.

[t/j]i = t if i = j

[t/j]i = i if i 6= j

[t/j]λ.t′ = λ.[↑1 (t)/j + 1]t′

[t/j]t1 t2 = [t/j]t1 [t/j]t2

3

Figure 1: λ.(λ.λ.10) (λ.1) →β λ.(λ.λ.2 0) illustrated

We define beta reduction by substituting the term for the 0th variables and
shifting the term by −1, because beta reduction strips one lambda off the term.

(λ.t1)t2 =↑−1 ([↑1 (t2)/0]t1)

2 Introduction

So far, we have considered a few languages (e.g., a language for numbers, un-
typed lambda calculus) and gave a operational semantics for them. We observed
several times that the operational semantics is not able to evaluate any term.
In practice, this means that we would get “stuck” if we try to evaluate a term
that the operational semantics does not know how to handle. An example of
such a term is if (λ x.x) then true else false.

Unsafe languages such as C/C++ can refuse to continue execution when
they encounter such terms (e.g., “core dump”). In this lecture, we will start
learning some neat ideas for designing languages that don’t get “stuck” or “go
wrong.”

3 Simply Typed Lambda Calculus

Values v : : = true | false | λx.t

Terms t : : = v | if t then t else t | t t

Let’s give a call-by-value operational semantics for this

4

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

if true then t2 else t3 → t2

if false then t2 else t3 → t3

t1 → t′1
t1 t2 → t′1 t2

t2 → t′2
t1 t2 → t1 t′2

(λx.t) v → [v/x] t

Note now that this semantics gets stuck when we try to evaluate the term
if λx.x then true else false.

4 Types

Think of all the terms that can be generated with the abstract syntax. The
problem is that some of these terms cannot be evaluated using our operational
semantics. So we will try to identify the terms that the operational semantics
can evaluate.

We will put some structure to the set of terms by dividing it into into disjoint
subsets. Informally, we will place the terms that the operational semantics treats
in the same way into the same subset. We will then give a name to each subsets
which will be its type. The goal is to be able to say that if a term is well typed,
then operational semantics will be able to evaluate the term to a value (barring
infinite evaluation).

We have been vague about how we decide that the operational semantics
treats two terms “similarly” (so that we can give them the same type). More
precisely, we will assign two terms the same type if the operational semantics
can evaluate them to a value of that type.

So we can build our type system by starting with the values, giving them
a type and figuring out the types of other more complex terms. Since we have
booleans in our language, we will have a type of bool type.

For a term t, we will write t : τ to say that t has type τ . So we have
true:bool and false:bool.

Let’s now start figuring out the type for other terms. We will do this induc-
tively by using inference rules.

5

Before we go on, we will need to figure out a type for functions, but should
their type be? The type of a function should include its return type, because
when we apply a function that is what it will evaluate to. How about the
argument type? It is important to include that as well so that we can make
sure that when a function is applied to an argument, the argument has the
correct type.

Now here is a first try to a set of type inference judgements:

true : bool

false : bool

t1 : bool t2 : τ t3 : τ
if t1 then t2 else t3 : τ

t : τ2

λx.t : τ1 → τ2

t1 : τ1 → τ2 τ2 : τ1

t1 t2 : τ2

Note that for the if statement we insist that both branches have the same
type. In other words, we insist that both branches return values of the same type
when evaluated. This is a conservative assumption, because we only need to
know that the branch that ends up being evaluated returns the desired type. In
particular, consider the following statement if true then true else (λ x.x)
always returns true. But it is not a well-typed term.

The reason for this assumption is that we want to be able to determine the
type of the term by “looking” at it—we don’t want to execute it. Execution
would be too late. The idea here is to prevent execution time errors by designing
a safe language. In other words, we want to be able to check a term and
determine that it is safe to execute by simply inspecting it.

Question: This type system is broken. Why?

The problem is that it accepts very few terms. Consider for example the
function λx.if x then true else false. We can assign a type to this term
using the given judgments. In particular, if we apply the rules above, we will
want to derive the relation if x then true else false : bool but this requires
that we know the type of x. But we don’t have a way of knowing the type of x.

To typecheck terms that have free variables in them, we will enrich our type
system with a (typing) context for variables. We define a context for variables,
written Γ as a function that maps variables to types. We define Γ as either
empty, or a sequence of variable typings as follows:

Γ : : = ∅ | Γ, x : τ

6

We can now update our type system with the context.

Γ ` true : bool

Γ ` false : bool

Γ ` t1 : bool Γ ` t2 : τ Γ ` t3 : τ

Γ ` if t1 then t2 else t3 : τ

Γ, x : τ1 ` t : τ2

Γ ` λx.t : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` τ2 : τ1

Γ ` t1 t2 : τ2

Note that we simply thread the context Γ through the rules, except that at
function definitions.

There is one more thing that is not quite satisfactory with this type system.
What is the type for λx.x?
It can be any function type really, e.g., it can be bool → bool, (bool → bool) → (bool → bool).
We always want types to be unique, i.e., we never want a term have more

than one type. So we will extend our language so that we have type annotations
at variable binding locations. Figure 2 shows our updated syntax and the type
system.

7

Types τ : : = bool | τ1 → τ2

Values v : : = true | false | λx : τ.t

Terms t : : = v | t t | if t then t else t

Context Γ : : = ∅ | Γ, x : τ

Γ ` true : bool

Γ ` false : bool

x : τ ∈ Γ
Γ ` x : τ

Γ ` t1 : bool Γ ` t2 : τ Γ ` t3 : τ

Γ ` if t1 then t2 else t3 : τ

Γ, x : τ1 ` t : τ2

Γ ` λx : τ1.t : τ1 → τ2

Γ ` t1 : τ1 → τ2 Γ ` τ2 : τ1

Γ ` t1 t2 : τ2

Figure 2: Simply typed lambda calculus with booleans and its type system.

8

5 Type Safety

We now have a set of typing rules for simply typed lambda calculus. We do not
know, however, that type system is faithful to the operational semantics. Recall
that our motivation is to design a language where well typed terms do not get
stuck during evaluation—when evaluating the term we never want to be in a
situation where we don’t know how to continue evaluating that term.

We will need to prove type safety.

First remember that if we have a well typed term, then we want to be able
to evaluate this term. Let’s write this down more precisely:

If t : τ , then either t is a value, or t → t′.

This property says that if we are given well typed term, then the term is
either a value (in this case we are done evaluating this term), or the term reduces
to another term t′. This property is often called progress.

Note that progress property ties together types (the static semantics) and
the operational semantics (dynamic semantics).

Does this suffice? Not quite. What about a semantics that evaluates a
function to the constant true. Instead, we will insist that evaluation preserves
typing. More precisely,

If Γ ` t : τ and t → t′, then Γ ` t′ : τ .

This is often referred to as the preservation theorem.

Progress and preservation gives us some important invariants about about
language. They tell us that if we start with a program (a closed term) in our
language, then either that term is a value, or the term can be reduced to another
term without changing its type.

6 Properties of Typing

Before we prove type safety, let’s talk about some basic properties of typing and
the structures that we use to state the type system. We will not prove these
properties but I highly recommend that you do prove them yourself. The proofs
should not be hard. These properties primarily give you some vocabulary for
talking about type systems.

Lemma 1 (Inversion (of the typing relation))

If Γ ` x : τ , then x : τ ∈ Γ.

If Γ ` λx : τ1.t2 : τ , then τ = τ1 → τ2 and Γ, x : τ1 ` t2 : τ2.

If Γ ` t1 τ2 : τ , then there is some τ1 such that Γ ` t1 : τ1 → τ and Γ ` t2 : τ1.

If Γ ` true : τ , then τ = Bool.

If Γ ` false : τ , then τ = Bool.

9

If Γ ` if t1 then t2 else t3 : τ then Γ ` t1 : bool, Γ ` t2 : τ and Γ ` t3 : τ .

This lemma simply inverts the typing judgements. Since we define the type
relation t : τ to be the minimum relation that is derivable by application of
typing judgements, we can invert the type relation for each term.

Exercise: Show that given a context Γ, a term t has at most one type
under Γ. (uniqueness of typing).

Note that this holds for this type systems. It may not hold for others.

We now state what is known as a canonical forms lemma. This lemma states
the forms of the values of each type.

Lemma 2 (Canonical Forms)
1. If v is a value and v : bool, then v = true or v = false.

2. If v is value and v : τ1 → τ2, then v = λx : τ2.t.

Lemma 3 (Permutation)
If Γ ` t : τ and ∆ is any permutation of Γ, then ∆ ` t : τ .

Lemma 4 (Weakening)
If Γ ` t : τ and x 6∈ dom(Γ), then Γ, x : τ ′ ` t : τ .

10

