
CS369E: Expanders April 4, 2005

Lecture 1: Expanders – an Introduction

Lecturer: Cynthia Dwork Scribe: Arpita Ghosh

In this lecture, we start with some basic definitions and notation, and then discuss some moti-
vating applications of expanders.

A graph G = (V,E) has vertex set V , with |V | = N , and edge set E. G is undirected, unless
specified otherwise, and can be a multigraph. A bipartite graph will be denoted as G = (L∪R,E),
i.e., its vertex sets are partitioned as L and R (L and R do not necessarily have the same size).

For each vertex v ∈ V , the neighborhood of v is denoted Γ(v), and defined as

Γ(v) = {u ∈ V | (u, v) ∈ E}.

The neighborhood of a subset S ⊆ V is defined as the union of the neighborhoods of the vertices
in S, i.e.,

Γ(S) = ∪v∈SΓ(v).

We also define
Γ

′
(S) = S ∪ Γ(S),

i.e., Γ
′
(S) consists of vertices in S as well as their neighbors.

Definition 1.1. A graph G is said to have vertex expansion (K, A) if

|Γ(S)| ≥ A · |S|, ∀S ⊆ V with |S| ≤ K.

We will then say that G is a (K, A)-expander

Clearly, a complete graph has the best possible expansion. However, we will be interested in
constant degree graphs. We will typically want K = cN , for some constant c, and A to be of the
order of the degree d of the graph. When K = N/2 (this will be the most common setting in
this course), we will refer to G as an A-expander. Informally, an expander graph is one where all
subsets of V (under some constraint on their size) have large neighborhoods. Now we will see some
applications and results related to expanders. Surprisingly, such graph do exisit. For the present
we will assume the existence of such graphs (and also that we can construct them efficiently). We
will defer the actual constructions of such expanders to the second half of this course.

We will now consider applications of such graphs in five different contexts.

• Time-space tradeoffs

• Byzantine Agreement

• Saving Random Bits

• Error Correcting Codes

• Metric Embeddings

Two of these applications (the first and the last) are lower bounds while the other two are upper
bounds. These examples illustrate the use of expanders in a wide variety of contexts, both for
positive and negative results. We will not furnish full proofs in these examples, however.
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1.1 Time-space tradeoffs in computing functions

One of the first uses of expanders in computer science was in studying the computational hard-
ness of certain functions. Given a specific method for computing a function we can create an
acyclic computational circuit describing the computation. Valiant was studying the hardness of
computing certain linear transforms, and observed that every circuit computing these functions
was a superconcentrator [Val]. Intuitively, these are graphs with very great flow from inputs to
outputs: An n-superconcentrator is a graph with n inputs and n outputs, such that for all subsets
S of the input, and all subsets T of the output with |T | = |S|, there exist vertex disjoint paths
connecting S to T . Valiant hoped to obtain lower bounds for the linear transforms by obtaining
high lower bounds for superconcentrators. Valiant conjectured that any superconcentrator must
have a superlinear number of edges. However, Valiant himself disproved this conjecture and gave
construction of superconcentrators with O(n) edges using expanders. This happens to be the first
context when expanders where used in Computer Science. For an interesting account of the details
that went into the discovery of expanders, refer the writeup on Reingold’s recent “SL=L” result by
Sara Robinson [Rob].

However, it turns out that superconcentrators exhibit interesting time/space tradeoffs, leading
to time/space tradeoffs for computations (see the work of Paul, Tarjan and Celoni [PTC, PT]). We
will show how a pebbling game on such graphs leads to some lower bounds. Consider the following
pebbling game played on a DAG (directed acyclic graph). To start with, the DAG has some
specified input nodes and output nodes, and some auxiliary nodes connecting inputs to output. All
edges are directed and go from left to right (inputs are on the left, and outputs on the right). We
are given S pebbles, with the following rules:

• A pebble can be placed on an input at any time.

• A pebble can be placed on a non-input node if all its predecessors (i.e., nodes with edges
leading into it) currently hold pebbles.

• A pebble can be removed at any time.

The goal is to evaluate the outputs, i.e., pebble each of the outputs. For example, suppose the
DAG represents a computational circuit. Clearly, with a large number of pebbles S, the outputs
can be computed in a small number of steps. If every graph to evaluate a function is such that it
cannot be pebbled quickly with a small number of pebbles, then the function is hard to compute
with a small amount of memory. For further details, refer to the work of Celoni, Tarjan and
Paul [PTC, PT].

As stated earlier, superconcentrators with O(n) eedges can be constructed from constant degree
expanders (we will not discuss this construction here). This construction uses the Hall’s Theorem
which states the necessary and sufficient condition for a graph to have a perfect matching. Since
this condition is similar in flavor to the definition of expanders, we state and prove Hall’s theorem
here.

Theorem 1.2. Let G = (L ∪ R,E) be a bipartite graph. Then, G has a perfect matching if and
only if

Γ(S) ≥ |S|, for all S ⊆ L. (1)
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Proof. The only if direction is obvious (if there is a subset of S with not as many neighbors as
vertices, S cannot have a matching). We will show the if direction by induction on the size of L.
The base case, where L has at most one vertex is trivial. Suppose now that the claim is true for
some L ≤ m. We will consider two cases:

• Case 1: All proper subsets S of L, S 6= ∅, expand strictly, i.e., |Γ(S)| > |S|. Consider any
vertex x in L, and let (x, y) be an edge in E. Now, consider the bipartite graph G∗ with
vertex sets L∗ = L − {x} and R∗ = R − {y}. Since every S ⊂ L satisfies (1) with strict
inequality, every subset of L∗ satisfies (1), since only a single vertex y has been removed from
R. Therefore, by the induction hypothesis, the smaller graph G∗ has a matching. To this
matching add the edge (x, y); this gives a perfect matching in G.

• Case 2: There exists a proper subset T ⊂ L, T 6= ∅, with |Γ(T )| = |T |. Consider the induced
graphs G1 and G2 on the vertex sets T ∪ Γ(T ), and L \ T ∪ R \ Γ(T ) respectively. By the
induction hypothesis, G1 has a perfect matching. (Note that the induction hypothesis cannot
be used directly on G2.) Let S ⊆ L \ T . Then,

ΓG2(S) = ΓG(S ∪ T ) \ ΓG(T )

⇒ |ΓG2(S)|
(a)

≥ |S ∪ T | − |T |
= |S|,

where (a) is true since S ∪T satisfies |ΓG(S ∪T )| ≥ |S ∪T |, and by assumption, |Γ(T )| = |T |.
Therefore, the graph G2 also satisfies (1), and by the induction hypothesis, has a matching.
The unions of the perfect matchings in G1 and G2 is a matching for G.

1.2 Almost Everywhere Byzantine Agreement

In the Byzantine agreement problem each of n processors begins with an input value, say, vi ∈ {0, 1}.
During the course of the computation each processor must irreversibly decide on an output value
di. The requirements are

• (Unanimty): All non-faulty processors must produce the same decision.

• (Non-triviality): If all non-faulty processors begin with the same value, say v, then every
non-faulty processor must output v.

Another application of expanders occurs in the context of solving Byzantine agreement in general
networks, where the processors correspond to nodes and a processor can only communicate with its
immediate neighbors. Dolev showed that for t-resilient Byzantine agreement, connectivity greater
equal 2t + 1 is necessary [Dol].

When t is linear in the number n of vertices in the network, this requires O(n2) edges, which
is unreasonable for large n. Consider, instead, a constant-degree expander on n vertices. In such
a network, if not too many nodes are faulty, then it can be shown that there is a large fraction
of non-faulty nodes that can communicate “as if” they were in a completely connected network.
Intuitively this is because expanders do not have small cuts.
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By relaxing the unanimity requirement, essentially permitting O(t) non-faulty processors to
be “lost” (not to join in the majority decision), we obtain almost-everywhere agreement [DPPU].
Using constant-degree expanders (together with other special graphs), the relaxed problem can be
solved in networks of bounded degree. For further details, refer [DPPU] and [Upf].

1.3 Saving random bits

Another application of expander graphs occurs in reducing the number of random bits used by
a randomized algorithm. We will study several such applications of expanders in the context of
derandomization. For today’s introductory lecture, we will study a simple and beautiful application
due to Karp, Pippenger and Sipser [KPS].

Recall that a language L belongs to RP if there exists a polynomial time Turing machine M
using a sequence of random bits (of length polynomial in the input size), such that

x ∈ L ⇒ |Wx|
2p(|x|) ≥ q ≥ 3

4
,

and
x /∈ L ⇒ |Wx| = 0,

where
Wx = {y|M(x, y) = 1, |y| = poly(|x|)}.

That is, if x ∈ L, the probability that M(x, y) = 0 (which is the probability of error) is less
equal 1− q, a constant (less than 1/4). That is, if the algorithm M returns 1 on input (x, y), then
surely x ∈ L, but if it returns 0, then x may or may not belong to L.

Let r be the number of random bits used to generate the string y, r = poly(|x|). Suppose we
want the probability of error to be δ. Since the error decreases by a constant fraction each time,
to reduce the probability of error down to δ, we can repeat the algorithm O(log(1

δ )) times. But for
this, the total number of random bits used is O(r log(1

δ )), i.e., we need to use a large number of
random bits to make the probability of error small.

Using expanders, it is possible to obtain, in polynomial time, to reduce the error to as low as
1

poly(r) with no extra random bits (i.e.using only the original r random bits).
The expander used is a giant (N/2, A)-expander G on N = 2r vertices where A is the expansion

of the expander. Note that since the expander is so large, we cannot even afford to write down
the entire expander, forget constructing it. However, we will assume that there exists an implicit
construction of the expander in the following sense: given any vertex v and any index i in the range
1 . . . d (where d is the degree of the expander), we can in time polynomial in |v| and |i|, compute
the ith-neighbor of v. The expanders constructions we will discuss later in the course will satisfy
such strong properties.

Choose a radius c such that 1
4Ac ≤ δ, where A is the expansion of G. Choose a vertex v uniformly

at random from G. This needs r random bits, since |V | = 2r. The modified RP algorithm is as
follows:

1. Run the original RP algorithm M for all strings y lying within a ball of radius c around v.

2. If for all these y, M(x, y) = 0, reject x.
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3. If M(x, y) = 1 for any y, accept x.

We will show that the error of this modified RP algorithm is at most δ.
Suppose x ∈ L. Define Badx to be the set of y for which M(x, y) = 0. The output is erroneous

only if Γ
′
c(v) ⊆ Badx, where the subscript c denotes the set of vertices within a distance c of v. Let

B = {v | Γ
′
c(v) ⊆ Badx}.

The algorithm fails only when v is picked from B. Now, by definition of B, for 1 ≤ i ≤ c− 1,

Γ
′
i(B) ⊆ Γ

′
i+1(B) ⊆ Badx.

Also, by definition, since we started with an input x ∈ L ∈ RP ,

|Badx| ≤ N/4.

Since G has an expansion of A,
|Γ′

c(B)| ≥ Ac|B|.

Combining all of this, we have

N

4
≥ |Badx| ≥ |Γ′

c(B)| ≥ Ac|B|,

and therefore,
|B|
N

≤ 1
4Ac

≤ δ.

But the algorithm only fails when the vertex v is picked from the set B, which has a probability
of |B|

N . Observe that the running time of the new algorithm is poly(1/δ). This limits the minimum
error that can be attained by this technique. Therefore, we can get any error δ = 1

poly(r) by choosing
c appropriately, with only r bits of randomness.

1.4 Error correcting codes

The next application comes from error correcting codes. Suppose a sender A is sending a k-bit
message to receiver B over a faulty channel, which could flip up to a fraction p of the bits sent over
it. The message is encoded by A into an n-bit codeword in C ⊂ {0, 1}n, where the size of the C is
2k (there is a unique codeword for each message). The decoding is simple: given an n-bit vector,
find the closest codeword w ∈ C, and return the k-bit message that maps to w. The rate R of the
code is defined to be

R =
log |C|

n
=

k

n
.

Clearly, if the Hamming distance between every two codewords is strictly greater than 2pn,
then the message can be decoded without error (there is a unique closest codeword w ∈ C for each
n-bit string.) Define the distance δ of a codebook to be

δ = min
c1 6=c2∈C

dH(c1, c2)
n

,

1-5



where dH , the Hamming distance, is the number of bit positions in which the vectors differ.
The communication problem is the following:

Is it possible to define a family of codes, {Ck}∞k=1, such that |Ck| = 2k, and for each k, δk > 0, and
Rk > 0?

We will show that codes with good distance can be constructed from expanders which have very
good expansion (more precisely, when the expansion factor is greater than half the degree). The
first such construction of expander based codes was given by Tanner [Tan]. Suppose we have an
(αN, K) d-regular expander G, where K > d/2. Consider a bipartite graph with L = n, with the
vertices in L the components of a (n-bit) codeword. Each vertex in R represents a constraint, which
are of the form ⊕xv = 0, where xv is the vth component of the (n-bit) codeword x. Thus if vertex
j ∈ R has neighbors, say i1, i2, i3 ∈ L, then vertex j represents the constraint xi1 ⊕ xi2 ⊕ xi3 = 0.
(Thus, the larger the number of constraints, the smaller the size of the code, and vice versa.)

Note that a code which is the set of Boolean vectors satisfying constraints of the form ⊕xv = 0
is a linear code, since (0, . . . , 0) belongs to the code, and if c1 and c2 belong to the code, then so
does c1⊕ c2. It can easily be checked (using the above definition) that the distance of a linear code
is the weight of the minimum weight (non-zero) codeword.

Now, since G has an expansion of K > d/2, for every subset S of L of size less equal αN , there
is a v ∈ Γ(S) such that v is adjacent to a unique element of S. Suppose not; then, every vertex in
Γ(S) is connected to at least two vertices in S. Let E be the number of edges between S and Γ(S),
then

d|S| = |E| ≥ 2|Γ(S)|

⇒ |Γ(S)| ≤ d

2
|S|.

But this contradicts the K > d/2 expansion of G.
Now, this means that there cannot be a codeword with only αN ones in it, since then we can

choose S to be this subset of αN ones, and have a violated constraint. Therefore, the minimum
weight codeword has a weight strictly greater than αN , and thus δ ≥ α.

If there are n(1 − c) constraints, then the set of codewords simultaneously satisfying these
constraints is a linear subspace of {0, 1}n, with size |C| ≥ 2nc. Therefore, the rate of such a code
would be nc/n = c, which is a constant greater than zero.

Thus, the existence of a family of expanders, with an expansion of K > d/2, and |R| = (1−c)|L|
allows the construction of a family of codes {C}k, with rate and minimum Hamming distance strictly
greater than 0 for all k. We will return to the applications of expanders to error-correcting codes
in one of the later lectures.

1.5 Metric embeddings

Another use of expanders occurs in metric embeddings. Let M on (X, D) (i.e., a metric on X
with distance measure D) and M

′
on (X

′
, D

′
) be two metrics. An embedding f : M → M

′
has

distortion c if
∀x, y ∈ X, D(x, y) ≤ D

′
(f(x), f(y)) ≤ cD(x, y).
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Bourgain showed that any n-point metric space can be embedded into l2-metric 1 with distortion
O(log n) and dimension at most O(log n) [Bou].

Embeddings are used in several contexts. For instance, it might be the case that a problem (say
the Travelling Salesman Problem) is hard in an arbitrary metric, but is slightly more tractable in a
well-understood metric such as l2. In this case, it is plausible that embedding the arbitrary metric
into l2, solving the problem in l2 and retransforming the problem back to the original metric gives
some insight into the solution of the problem in the “hard” metric.

The following is another application of metric embeddings into l2. Suppose we are given a graph
G = (V,E) with weights (or distances) on edges, and the distance between an arbitrary pair of
nodes i and j is the shortest path distance between i and j on G. We want to be able to quickly
answer (approximately) a query of the form ‘what is the shortest path distance between vertices
i and j in G’, where i and j are arbitrary. To answer this question exactly, the storage required
is O(n2) (store all the shortest path distances). However, the l2 embedding allows us to simply
compute the l2 distance between the queried vertices in the l2 embedding, which is a O(log n)
approximation to the actual shortest path distance between the same vertices in G. The storage
required for the l2 embedding is O(n log n); since the l2 embedding is into a O(log n) dimensional
space (which is, of course, better than the O(n2) storage for the exact solution).

Expanders happen to be some of the worst case examples for embedding. In this sense, ex-
panders are sometimes used to show the limits of embedding. For instance, London, Linial and
Rabinovich showed that this is actually tight, by constructing expanders for which the distortion
is Ω(log n) [LLR].
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