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2.1 Lecture Outline

1. A non-constructive proof that expanders exist.

Our method of proof will be to pick a random graph and show that it is an expander
with some non-zero probability. There do exist constructive proofs, but we won’t see
any today. Given this proof, in order to find an expander in practice, we might want
to generate a graph at random and test to see if it is an expander – but testing is
co-NP hard.

2. Explore the connection between expanders and the spectrum of the graph (that is,
the set of eigenvalues of the graph).

There is a connection between the expansion of a graph and the eigengap (or spectral
gap) of the normalized adjacency matrix (that is, the gap between the first and second
largest eigenvalues). Recall that the largest eigenvalue of the normalized adjacency
matrix is 1; denote it by λ1 and denote the second largest eigenvalue by λ2. We will
see that a large gap (that is, small λ2) implies good expansion and vice versa.

(a) Large spectral gap implies good expansion.

(b) Expander Mixing Lemma
Heuristically, this says that “an expander graph will behave like a random graph.”
Let S and T be disjoint subsets of a vertex set V . If G is a random d-regular
(multi)graph on V , then the expected number of S-T edges (that is, edges with
one endpoint in S and one endpoint in T ) is d|S||T |/N . The lemma says that in
an expander on V , the number of S-T edges will be d|S||T |/N + λ2(error term).

3. Alon’s proof ([Alo], 1986) that good expansion implies a large spectral gap.

This can be viewed as a discrete analogue of a result of Cheeger. Though vertex
expansion and spectral gap are very closely related, vertex expansion does not seem to
be the combinatorial equivalent of spectral expansion. This is because, the connection
between vertex expansion and spectral expansion does not seem to be tight. Bitu and
Linial ([BL], 2004), via their (partial) converse to the expander mixing lemma, give
what might be the combinatorial equivalent notion (at least in the case of constant
degree graphs) of the second eigen value.

4. The relationship between d and λ2.

(Several of the proofs given in this Section are from Lectures 8 and 9 of Salil Vadhan’s
notes on Pseudo-randomness [Vad]).

2-1



2.2 Existence of Expanders

The best probabilistic result on the existence of expanders is:

Theorem 2.1. Fix d ≥ 3. A random d-regular graph is a (Ω(N), d − 1.01)-expander with
high probability (as N →∞, the probability goes to 1).

We will not prove this result. Instead we will show the existence of bipartite expanders.
Let Gd,N denote the set of bipartite graphs with partite sets L and R of cardinality N and
left degree d.

Theorem 2.2. For all d, there exists α(d) > 0 such that for all N ,

Pr[G is an (αN, d− 2)-expander] ≥ 1/2,

where G is chosen uniformly at random from Gd,N . (In fact, we can take α(d) = 1/(cd4)
for some constant c.)

Proof. To choose G in Gd,N uniformly at random, we choose d (not necessarily distinct)
neighbors for each vertex L at random. For k ≤ αN , let

pk = Pr[∃ S ⊆ L such that |S| = k, |Γ(S)| < (d− 2)|S|].

Thus pk is the probability that G is not a (αN, d− 2)-expander because the neighborhood
of a set of size k is not large enough. To prove the theorem, it suffices (by the union bound)
to show that

∑
k pk ≤ 1/2.

If S ⊆ L has cardinality k, then the total number of neighbors of vertices in S, counted
with multiplicity, is dk. So if |Γ(S)| < (d − 2)k, then there must be 2k repeats among the
neighbors of vertices in S. We can compute this probability:

Pr[at least 2k repeats among the kd neighbors of vertices in S] ≤
(

kd

2k

) (
kd

N

)2k

.

Here, the binomial coefficient represents the number of ways to choose 2k neighbors to be
repeats, and the fraction kd/N represents an upper bound on the probability that any given
choice of a neighbor is a repeat. That this is an upper bound follows from the union bound.
Since there are

(
N
k

)
possibilities for S, we have

pk ≤
(

N

k

)(
kd

2k

)(
kd

N

)2k

≤
(

Ne

k

)k (
kde

2k

)2k (
kd

N

)2k

=
(

cd4k

N

)k

,

where c = e3/4. When α = 1/(cd4) and k ≤ αN , we see that pk ≤ 4−k. Then

Pr[G is not an (αN, d− 2)-expander] ≤
αN∑
k=1

pk ≤
αN∑
k=1

4−k < 1/2.

This completes the proof.
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2.3 Exploring the spectral connection

Let G be a d-regular multigraph with normed adjacency matrix A. The largest eigenvalue
of A is λ1 = 1 with eigenvector u = (1/N, . . . , 1/N). Then the second largest eigenvalue is
given by

λ2 = max
‖x‖=1,x⊥u

‖Ax‖.

If π is a probability distribution on the vertices of G (represented as a vector), we can
write π = u + π⊥, where π⊥ ⊥ u. View A as the transition matrix for a Markov chain and
use the initial distribution π. Then

Aπ − u = A(u + π⊥)− u = Au− u + Aπ⊥ = Aπ⊥.

Thus
‖Aπ − u‖2 = ‖Aπ⊥‖2 ≤ λ2

2‖π⊥‖2 = λ2
2‖π − u‖2.

Definition 2.3. G has spectral expansion λ if λ2(G) ≤ λ.

So if G has spectral expansion λ, at each step of the Markov chain, distance to uniformity
shrinks by at least λ. Note that the term spectral expansion suggests that large λ is good
for expansion, but the opposite is true.

Definition 2.4. Given a probability distribution π, the collision probability of π is Coll(π) =
‖π‖2 =

∑
x π2

x.

Lemma 2.5. Coll(π) = ‖π − u‖2 + 1/N .

Proof. Write π = u + π⊥. Then

‖π‖2 = ‖u‖2 + ‖π⊥‖2 = 1/N + ‖π − u‖2.

Note that Aπ is also a probability distribution and using the lemma, we can compute
the associated collision probability:

Coll(Aπ)− 1/N = ‖Aπ − u‖2 ≤ λ2‖π − u‖2 = λ2(Coll(π)− 1/N).

Given a probability distribution π, let the support of π be support(π) = {x : πx 6= 0}.

Lemma 2.6. Let π be a probability distribution. Then Coll(π) ≥ 1/|support(π)|.

Proof. Let m = |support(π)|. We claim that if x1 + · · · + xm = x, then x2
1 + · · · + x2

m is
minimized (with value x/m) when x1 = · · · = xm = x/m. This easily follows from the fact
that x2 + y2 ≥ ((x + y)/2)2 + ((x + y)/2)2. Thus Coll(π) ≥ 1/m and we are done.

Theorem 2.7. If G has spectral expansion λ, then for all α > 1, G has vertex expansion(
αN, 1

(1−α)λ2+α

)
.
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Proof. Let |S| ≤ αN . Choose π a probability distribution that is uniform on S and 0 on
the complement of S. Then

Coll(π) = 1/|S| and Coll(Aπ) ≥ 1/|support(Aπ)| = 1/|Γ(S)|.

Then
1/|Γ(S)| − 1/N ≤ λ2(1/|S| − 1/N).

But N ≥ |S|/α, so solving the above inequality gives

|Γ(S)| ≥ |S|
(1− α)λ2 + α

.

Thus G is an (αN, 1/((1− α)λ2 + α))-expander.

Now we turn to a theorem on the spectral expansion of random graphs.

Theorem 2.8 (Alon’s Conjecture, Friedman ([Fri], 2003)). For any d and any con-
stant ε > 0, a random d-regular graph has spectral expansion at most 2

√
d− 1/d + ε with

probability 1− 1/NΩ(d).

This theorem says that with high probability, the spectral expansion of a random d-
regular graph is approximately bounded by 2/

√
d. The previous theorem implies that such

a graph has expansion at least d/4. In fact, there do exist graphs with λ2 ≤ 2/
√

d and
expansion greater than d/2.

There is a theorem of Alon and Boppana that gives a lower bound for spectral expansion,
showing that Alon’s Conjecture is essentially sharp.

Theorem 2.9 (Alon-Boppana (stated in [Alo])). Any infinite family of d-regular
graphs has spectral expansion (as N →∞) at least 2

√
d− 1/d− o(1).

2.3.1 Expander Mixing Lemma

Heuristically, the following lemma, due to Alon and Chung [AC], says that an expander
graph behaves like a random graph.

Theorem 2.10 (Expander Mixing Lemma, [AC] 1988). For any subsets S and T of
V (G), let e(S, T ) denote the set of S−T edges in G (edges with one endpoint in S and one
endpoint in T ). Let G be d-regular with λ2 = λ. Then

|#e(S, T )− d|S||T |/N | ≤ λd
√
|S||T |.

Proof. Let χS and χT be the characteristic vectors of S and T respectively. First note that

#e(S, T ) =
∑

u∈S,v∈T

(dA)uv =
∑
u,v

χS(u)(dA)uvχT (v) = χt
S(dA)χT .

Write χS in terms of something parallel to u and χ⊥S . Then the coefficient of u is the
projection

χS · u
‖u‖2

=
(1/N)

∑
i χS(i)

(1/N)
= |S|.
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So
χS = |S|u + χ⊥S and χT = |T |u + χ⊥T .

(The intuition should be that the term |S|u “spreads the weight evenly” and χ⊥S is an error
term.)

Now:

#e(S, T ) = (|S|u + χ⊥S )t(dA)(|T |u + χ⊥T )
= d|S||T |(u · u) + d|S|utAχ⊥T + d|T |(χ⊥S )tAu + d(χ⊥S )tAχ⊥T

Since χ⊥T · u = 0, we see that utAχ⊥T = 0, and similarly χ⊥S Au = 0. Then

#e(S, T ) = d|S||T |/N + d(χ⊥S )tAχ⊥T

≤ d|S||T |/N + ‖χ⊥S ‖‖Aχ⊥T ‖
≤ d|S||T |/N + dλ‖χS‖‖χT ‖
= d|S||T |/N + dλ

√
|S||T |.

From the first line, it is evident that #e(S, T ) ≥ d|S||T |/N . Thus

|#e(S, T )− d|S||T |/N | ≤ dλ
√
|S||T |.

There is a partial converse to this theorem.

Theorem 2.11 (Bilu-Linial, ([BL], 2004)). Let G be a d-regular graph and fix θ. If for
all S, T ⊂ V , the inequality

|#e(S, T )− d|S||T |/N | ≤ θd
√
|S||T |

holds, then G has spectral expansion λ = O(θ(1 + log (d/θ))).

In particular, this means that for a d-regular graph, λ is essentially (up to log d factor),
the best constant that can occur in the expander mixing lemma.

2.4 Vertex Expansion Implies Spectral Expansion

The following theorem (due to Alon) is a discrete version of Cheeger’s result. We first
prove for the special case when the normalized adjacency matrix A has only non-negative
eigenvalues.

Theorem 2.12 (Alon, ([Alo], 1986)). Let G be a d-regular (N/2, 1 + α)-expander and
let λ2(G) be the second largest eigenvalue of the normalized adjacency matrix A(G) of G
in absolute value. If the matrix A = A(G) has all non-negative eigen-values, then G is a
λ-spectral expander for λ = 1− α2/(d(8 + 4α2)).
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Proof. Let x be an eigenvector with eigenvalue λ2(A). Since x ⊥ u, the vector x has both
positive and negative entries. Let V+ = {i : xi > 0} and V− = {i : xi ≤ 0}. Without loss
of generality |V+| ≤ N/2. Let x be the vector that agrees with x on V+ and is 0 elsewhere.

Note that 〈x, x〉 = 〈x, x〉, so it can be shown that

λ2(A) =
λs 〈x, x〉
〈x, x〉

=
λ2 〈x, x〉
〈x, x〉

=
〈Ax, x〉
〈x, x〉

.

Also,

λ2(A) 〈x, x〉 = 〈Ax, x〉
=

∑
i,j

Aijxjxi

= ‖x‖2 − 1
d

d‖x‖2 −
∑

i∈V+,{i,j}∈E

xixj


= ‖x‖2 − 1

d

d‖x‖2 − 2
∑

i,j∈V+,{i,j}∈E

xixj −
∑

i∈V+,j∈V−,{i,j}∈E

xixj


≤ ‖x‖2 − 1

d

d‖x‖2 − 2
∑

{i,j}∈E

xixj


= ‖x‖2 − 1

d

∑
{i,j}∈E

(xi − xj)2

λ2 ≤ 1−
∑

{i,j}∈E (xi − xj)2

d
∑

i∈V x2
i

. (1)

Build a new (directed) graph H as follows. Let

V (H) = {s} ∪ {vi : i ∈ V+} ∪ {wj : j ∈ V } ∪ {t}.

For all i ∈ V+, put the arcs (s, vi) in H with capacity 1 + α. For each i ∈ V+ and j ∈ V
where j is a neighbor of i in G, put the arcs (vi, wj) in H with capacity 1. Finally, for each
j ∈ V , put the arcs (wj , t) in H with capacity 1.

We claim that the minimum cut in this graph is (1+α)|V+|. A cut of this size is given by
the set of arcs {(s, vi) : i ∈ V+}. Given any other cut C, let W = {i ∈ V+ : (s, vi) /∈ C}.
For each j ∈ N(W ), there must be an arc in C adjacent to wj . But |N(W )| ≥ (1 + α)|W |,
so the capacity of C must be at least (1 + α)|V+ − W | + |N(W )| ≥ (1 + α)|V+| (since
|W | ≤ N/2). So the minimum cut has capacity (1 + α)|V+|.

By the min-cut max-flow theorem, there exists a flow on H of size (1 + α)|V+|. In
particular, note that the flow through each vertex vi must be 1 + α. Reading off the flow
along arcs (vi, wj), it follows that there is a function F : V ×V → R satisfying the following
conditions (here Ẽ denotes the set of ordered pairs (i, j) where {i, j} ∈ E, so that each edge
in E is counted twice in Ẽ):

1. 0 ≤ F (i, j) ≤ 1 for all i, j ∈ V .
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2. F (i, j) = 0 if i /∈ V+ or (i, j) /∈ Ẽ.

3.
∑

j : (i,j)∈Ẽ F (i, j) = 1 + α for each i ∈ V+.

4.
∑

i : (i,j)∈Ẽ F (i, j) ≤ 1 for each j ∈ V .

We need to calculate two bounds involving F in order to bound λ2(G). Keeping in mind
that 2(a2 + b2) ≥ (a + b)2 for all real a and b, we find:∑

(i,j)∈Ẽ

F 2(i, j)(xi + xj)2 ≤ 2
∑

(i,j)∈Ẽ

F 2(i, j)(x2
i + x2

j )

= 2
∑
i∈V

x2
i

 ∑
(i,j)∈Ẽ

F 2(i, j) +
∑

(i,j)∈Ẽ

F 2(j, i)


≤ (4 + 2α2)

∑
i∈V

x2
i .

∑
(i,j)∈Ẽ

F (i, j)(x2
i − x2

j ) =
∑
i∈V

x2
i

 ∑
(i,j)∈Ẽ

F (i, j)−
∑

(i,j)∈Ẽ

F (j, i)


≥ α

∑
i∈V

x2
i

Note that in the third line, we used the fact that if x1 + · · · + xn = 1 + α and 0 ≤ xi ≤ 1
for all i, then x2

1 + · · ·+ x2
n ≤ 1 + α2. Multiplying equation (1) by

1 =

∑
(i,j)∈Ẽ F 2(i, j)(xi + xj)2∑
(i,j)∈Ẽ F 2(i, j)(xi + xj)2

and using Cauchy-Schwarz, we get

λ2(G2) ≤ 1−
∑

{i,j}∈E (xi − xj)2

d
∑

i∈V x2
i

= 1−
∑

{i,j}∈E (xi − xj)2 ·
∑

(i,j)∈Ẽ F 2(i, j)(xi + xj)2

d
∑

i∈V x2
i ·

∑
(i,j)∈Ẽ F 2(i, j)(xi + xj)2

≤ 1−

(∑
(i,j)∈Ẽ F (i, j)(x2

i − x2
j )

)2

2d(4 + 2α2)
(∑

i∈V x2
i

)2

≤ 1− α2

d(8 + 4α2)
.

This completes the proof.

We now move to the general case, when the eigen-values of A(G) need not all be non-
negative.
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Corollary 2.13. If G is a d-regular (N/2, 1 + α)-expander, then G is also a λ-spectral
expander for λ =

√
1− α2/(d2(8 + 4α2)).

Proof. Consider the graph G2. If the normalized adjacency matrix of G is A, then the
normalized adjacency matrix of G2 is A2. Also G2 is d2-regular and has all non-negative
eigenvalues. Finally, G2 is a (N/2, 1 + α)-expander, as follows: If S is a subset of the
vertices of size at most N/2, then |N(S)| ≥ (1 + α)|S|. Choose a subset S′ of N(S) with
|S| ≤ |S′| ≤ N/2. Then |N(N(S))| ≥ |N(S′)| ≥ (1 + α)|S′| ≥ (1 + α)|S|. But N(N(S)) is
the neighborhood of S in G2, and S was an arbitrary subset of vertices of size at most N/2,
so G2 is a (N/2, 1 + α)-expander.

By Theorem 2.12, λ2(G2) ≤ 1 − α2/(d2(8 + 4α2)). Since the eigenvalues of G2 are the
squares of the eigenvalues of G, taking the square root of the right-hand side proves the
corollary.
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