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Materials used for this lecture

@ The slides for Non-parametric BP come from Erik Sudderth 2010
class on learning and inference on graphical models. Thanks Erik!

@ See references for the rest of the class.
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What did we look into last class?

@ Local and global image features
o Similarities between images

@ Discriminative prediction

o NN
o Regression
o Mixture of experts
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What are we going to see today?

Continue on discriminative prediction:
o Latent spaces for discriminative prediction
@ Structure prediction

Look into combinations of generative and discriminative methods

No time for activity recognition: modern approaches are similar to object
recognition.
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Feature types

@ Global vs local

@ For local features: Interest points vs dense local features
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Different descriptors

@ Global descriptors: HOG, PHOG, Shape Context, GIST, HMAX
@ Local descriptors: SIFT, SURF, Geometric Blur
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Distances between features

@ Global descriptors: euclidean, mahalanobis, histogram intersection
@ Local features: BOW, matching, PMK, Spatial pyramid.
@ Multiple Kernel Learning

Figure: (left) BOW, (right) Spatial pyramid
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Discriminative approaches

o NN techniques: Linear search, Space partitioning (e.g., KD-trees),
LSH, PSH.

@ Regression: least-square regression, ridge regression, lasso, GP
regression

@ Mixture of experts due to multimodal mappings, e.g., mixtures of
local GPs.
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Shared latent space models

Many different models:
e Canonical Correlation Analysis (CCA).

@ Shared-GPLVM (Shon et al. NIPS'06, Ek et al. MLMI'07,
Navaratnam et al. ICCV'07).

@ Shared-KIE (Sigal et al. CVPR'09).

They are effective when the views are correlated.
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Canonical Correlation Analysis (CCA)

@ Seek vectors wy and ws so that the random variables w;Y(®) and woY®) are
maximally correlated

T
- Wy 212W2
T T

\/Wl 211W1 \/W2 222W2

p
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Canonical Correlation Analysis (CCA)

@ Seek vectors wy and ws so that the random variables w;Y(®) and woY®) are
maximally correlated

T
- Wy 212W2
T T
\/Wl 211W1 \/W2 222W2

p

@ Using a change of basis v; = (le)%wl and vy = (222)%W2 we can write
_ v/ (Z11) 2 10(Ta0) 2wy

B Vviviv/vl v,
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Canonical Correlation Analysis (CCA)

@ Seek vectors wy and ws so that the random variables w;Y(®) and woY®) are
maximally correlated

T
o Wy 212W2
T T
\/Wl 211W1 \/W2 222W2

p

@ Using a change of basis v; = ():11)%w1 and v, = (222)%w2 we can write
B vl (Z11) 2 T12(T22) " 2 vo

B Vviviv/vl v,

@ Closed form solution: The maximum correlation is attained if v; is the
eigenvector with maximum eigenvalue of the matrix
1 -1 1
(211) 2212222 ):21(211) 2.

@ The subsequent pairs are found by using eigenvalues of decreasing
magnitudes.

@ Orthogonality is guaranteed by the symmetry of the correlation matrices.
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Some remarks on CCA

@ Use the kernel trick to learn non-linear mappings Kernel CCA
@ Problems with correlated noise

@ Kernel CCA very sensitive to parameter tuning.
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Shared Gaussian process latent variable model

@ Model the mapping from a joint latent space to an observation spaces as
D;
p(Y?(Z7,%) = TT M (¥(j0. k)
d=1
where K() is an N x N kernel matrix.
@ The model is learn by minimizing the negative log likelihood
v
D: . D: . . .
Lawa = 3 (- KO+ Sler [(KO)YO(¥O)T] )
o = 32 (5 KO Fer [0 10y

@ For inferen;e, the mean prediction from a joint latent coordinate to a view is
given by y¢) = (k) T(KM)-1y (),

) (¥
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Shared GPLVM

@ Developed by Shon et la. 06.
o Adapted by Ek et al. 07 and Navaratnam et al. 07 to solve pose

estimation.

Figure: Modeling ambiguities (Navaratnam et al. 07)
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Shared Kernel Information Embedding

@ Extension of the Kernel Information Embedded (Memisevic 06) to have a
shared latent space.

@ The model is learn by maximizing the mutual information of a shared latent
space x() and an observation space y(*)

@ The mutual information is approximated using kernel density estimation
(KDE) as

7(y“), ) = —leogzk Xj, Xt) Zlogzk(yj 'y
Nzlogzk(xj,xt (y! 7yt))-
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Shared Kernel Information Embedding

@ In the shared KIE model the loss function is defined as (Sigal et al.

09).
%4
Lata = — 27 <y(i)> X)

i=1
@ For inference, the mean prediction from a joint latent coordinate to a
view is given by
N
() _ k(%) (i)
-y y

¥
j=1 ivzl Ko (%, xe) ™
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Human Pose Estimation

@ We seek to recover the 3D pose from image features.

@ The mapping is multimodal: an image observation can correspond to more
than one pose.

@ Private latent spaces can model these ambiguities.
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Shared and private information

@ Ek et al. 08 developed NCCA
@ First compute the shared space using CCA

@ Then solve for the private space iteratively by solving an eigenvalue problem
to reconstruct the residual information.
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Shared and private information

@ Use NCCA to initialize a GPLVM with shared and private spaces

@ Problem, learning the GPLVM tends to merge information between shared
and private

Figure: Modeling ambiguities (Ek et al. 08)

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 18 / 94



Factorized Orthogonal Latent Spaces (FOLS)

@ Learn shared and private spaces that represent non-redundant information
by means of orthogonality constraints (Salzmann et al. 10)

@ Discover the structure and dimensionality of latent spaces by encourage
low-dimensionality (Geiger et al. 09).

@ Salzmann et al. demonstrate the effectiveness of our constraints on 2
different models: Shared GPLVM and Shared KIE.

@ A FOLS model can be learned by minimizing

L= Ldata + Lortho + Ldim + Lenergy
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Orthogonality

@ We encourage the different latent spaces to be non-redundant.

Lotho =y | IXT-ZOJE + 31127 - 2V

J>i

@ Minimize the Frobenius norm of inner product of latent spaces.

@ This has the advantage of being continuous and differentiable.
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Low-Dimensionality

e Encourage M() to be low rank, with m() = [x,z()].

@ Functions of the singular values s; are typically used as relaxations.
Laim =7 Y _ 6(si) -
i

@ A particular instance of this is the trace norm, which is convex

&(si) =D _lsil -

J
@ L.t is nON-convex, so we can use non-convex regularizers.
2
¢(si) =Y _(L+ Blog(s?))) -
J

@ This drives smaller singular values faster to 0.
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Energy Conservation

@ Orthogonality and low-dimensionality terms tend to drive the latent
coordinates to 0.
@ We seek to conserve the energy of the observed data.

Lenergy =1 > (ES) =3 s2))?,
i J

where Eéi) =>; p,-QJ, with p; ; the singular values of Y.
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@ The data term Ly,:, depends on the particular model into which we
incorporate our constraints.

@ Salzmann et al. 10 used two different models:

o Shared Gaussian Process Latent Variable Model.
o Shared Kernel Information Embedding.
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FOLS-GPLVM

Shared GPLVM FOLS-GPLVM

‘o

@ We model the mapping from a joint latent space to an observation

spaces as
D;

p(Y120, %) = T[T N (Y%j0.KD) |
d=1
where K() is an N x N kernel matrix.

@ In practice we used the sum of an RBF kernel and a bias.
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FOLS-GPLVM

Shared GPLVM FOLS-GPLVM

@ In the FOLS-GPLVM, the loss function is defined as
Y /D D,
= E ! i ! =1y (i iNT
Lgata = <2In|K()]+2tr [(K()) Y()(y()) ]) .

i=1

@ For inference, the mean prediction from a joint latent coordinate to a
view is given by

)_{Sj) _ (kg))T(K(i))le(i) .
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FOLS-KIE

Shared KIE FOLS-KIE

¢

@ We seek to maximize the mutual information of a joint latent space
m() and an observation space y(/).

@ The mutual information is approximated using kernel density
estimation (KDE) as

o ; i 1 i i 1 i i
/ (y( )7(X72( ))) _N ZlOngm(mj(')am(t)) - N Z|°ngY(Y_§ )7y§))
J t j t

1 i i DG
; t

—+
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FOLS-KIE

Shared KIE FOLS-KIE

@ In the FOLS-KIE, the loss function is defined as
v
Ldata = — 27 (y(i)a (X7 Z(I))> :
i=1
@ For inference, the mean prediction from a joint latent coordinate to a
view is given by

N (i) i)
km(m,t, m;7) (M)

S() _
Y - v 4
3N kn(m D, mD)
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Human Pose Estimation

o Inference strategy
e Find nearest neighbor in image features space.
Compute k-NN in shared space.

o
o Take the corresponding private coordinates.
o Infer the pose from the FOLS-GPLVM or FOLS-KIE equations.
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Human Pose Estimation

o Inference strategy
e Find nearest neighbor in image features space.
Compute k-NN in shared space.

o
o Take the corresponding private coordinates.
o Infer the pose from the FOLS-GPLVM or FOLS-KIE equations.

@ Baselines
e k-NN in image features space.
o GP regression.
e Shared GPLVM or Shared KIE.
o Shared-Private factorization (Ek et al. 2008, Leen 2008).
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Figure: Humaneva jog motion (Salzmann et al. 10)
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Discriminative prediction

We have already covered
o NN
@ Regression
@ Mixture of experts

@ Subspace models

Now we are going to see structure prediction
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Non parametric BP for hand tracking

We will focus on Sudderth et al. 04.
Similar ideas for whole body in Sigal et al. 03.

Accurately locating a few fingers highly constrains the set of possible
global poses.

GOAL: Robustly propagate local image evidence to track arbitrary
hand motions.

@ Use structure prediction and graphical models to solve this.

Figure: Sudderth et al. 04
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Graphical models

An undirected graph G is defined by

V the set of nodes {1,2,--- , N}

& the set of edges (7, /) connecting nodes i,j € V
Nodes i € V are associated with random variables x;

Graph separation represents conditional independence

p(xa, xc|xg) = p(xalxg)p(xc|xB)

Figure: Sudderth 10
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Pairwise Markov Random Fields

@ Product of arbitrary positive clique potential functions
@ Guaranteed Markov with respect to corresponding graph

(X y Z H wl,j XI)XJ)H(Xi?y)
(ij)e€ ey

@ One case that we have seen in class is an HMM, where the
dependency is temporal.
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Belief Propagation (BP)

@ Beliefs: Approximate posterior marginal distributions (product update)
p(xily) = atbi(xi,y) [ mui(x)
ker(i)
with (i) the neighborhood of node /.
@ Messages: Approximate sufficient statistics (integral update)

mjj = a/_ Gilx, x)o(xiy) T[] mu(xi)dxi = a/_ wﬁ(xj’xi)ﬁ(xl'ly) dxi

ker(i)\j mii(xi)

@ BP is exact for trees.

~

— > 2 —

7

Figure: Sudderth 10
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Messages for continuous variables

m,-j:oz/ ¢j,'(Xj,X,‘) X,y H mk, dX,
X;

kel (i)\Jj
Discrete State Variables

@ Messages are finite vectors

@ Updated via matrix-vector products
Gaussian State Variables

@ Messages are mean and covariance

@ Updated via information Kalman filter
Continuous Non-Gaussian State Variables

@ Closed parametric forms unavailable

@ Discretization can be intractable even with 2 or 3 dimensional states
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Messages for continuous variables

@ Discrete State Variables
@ Gaussian State Variables

@ Continuous Non-Gaussian State Variables

riables

Figure: Message representation as (left) discrete (center) Gaussian and (right)
continuous non-Gaussian state variables (Sudderth 10)
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Non-parametric Inference for General Graphs

Particle Filters
« Markov chains

Belief Propagation
« General graphs

* Discrete or Gaussian

» General potentials

OL0L 0L O 0L 0L 0L O 0L0)

Nonparametric BP
« General graphs

* General potentials

Figure: Non-parametric Inference for General Graphs (Sudderth 10)
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Nonparametric Density Estimates

@ Kernel (Parzen Window) Density Estimator approximates PDF by a set of
smoothed data samples

M
~ 1 1 X—X,'
P(X)—M;UK( pu )

where X; are M independent samples from p(x), K is a kernel, typically
Gaussian, and o is the bandwidth

Figure: Kernel density estimation (Sudderth 10)
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Nonparametric BP

@ Input messages are kernel density estimates (Gaussian)
@ Message product: draw L samples

()N¢: Xn H mkl XI
kel (i)\j
@ Message propagation: Monte Carlo integration

xt ~ ahji(x, %)

Figure: Non Parametric BP (Sudderth 10)
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Nonparametric BP

@ Output message estimated from weighted samples via a bandwidth
selection rule

T

Y
n O
Lj

1

| SN

Figure: Non Parametric BP (Sudderth 10)
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NBP Marginal Update

Importance Sampling

@ Sample from product of all Gaussian mixture messages

@ Reweight samples by likelihoods (like particle filter)

~ 1/)! Xi,y H mkl xl

ker(i)

d messages, M kernels each

IIKelinooas (like particie Titer)

Product contains M? kernels

Figure: NBP Marginal Update (Sudderth 10)
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Structural model

@ Hand described by 16 rigid bodies

@ 3D geometry of each rigid body modeled by truncated quadric surfaces:
Ellipsoids, cones and cylinders (Stenger et al. 01).

@ Perspective projection maps quadrics to conics (ellipses, pairs of lines, etc.)
for efficient computation of edge and silhouettes.

@ Fixed geometry measured offline

Figure: Sudderth et al. 04
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Hand model projections

o~ N

{
Q

350 70Q°

N

Figure: Hand model projections (Sudderth et al. 04)
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Graphical model

@ We create the graphical model from constraints

ﬁ e@{(ﬁ
o o ™o

@ ®) G )

Figure: Hand constraints, (a) kinematic, (b) structural, (c) dynamic and (d)
occlusion (Sudderth et al. 04)
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Kinematic model

@ Rigid bodies kinematically related by revolute joints

@ Model has total of 26 DOF: 20 joint angles (4 per finger), Palms global
position and orientation.

@ Likelihood calculation requires global coordinates of all bodies: No direct
evidence for joint angle.

@ Forward kinematics maps joint angles to 3D poses.

@ The nodes are rigid bodies and the edges joints

Figure: Sudderth et al. 04

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 46 / 94



Local State Representation

@ The hand has 16 joints x = {x1,- - ,X16}.

e Each joint is described with a redundant parameterization x; = [q;, 1]
@ q; is a 3D position, and r; is a quaternion.

@ Advantage: Image appearance directly relates to local state

@ Disadvantage: It's redundant, we have additional dof.

Figure: Sudderth et al. 04
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Kinematic Constraints

@ Define an indicator function for each joint edge (i,/) € Ex

B 1 if (xj, %)) valid
Yi(xi, %) = {0 otherwise

= ] »fxix)

(ij)€€k

@ Kinematic prior model:

@ Graphical model exactly enforcing original joint angle constraints, e.g.,
conditioned on the palm, the fingers are statistically independent

«%@%/%%
Wm’@\o

BT

° e ™o
O/\
(@) (®) © @

Figure: Sudderth et al. 04

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010



Structural Constraints

@ Kinematics do not prevent finger intersection (joints not independent)

@ ldeal structural constraint prevents 3D quadric surface intersection

1 if|jg; —qj|| > 6
S ) A 1 |/ Y]
¢i,j(x”xl) B { 0 otherwise

° i :
Structural prior model ps(x) = H 1/1;51' Xi, Xj

(iJ)EEs

Ae@»
Wemmo

S B A

° e |~
R
(@ (®) © (@)
Figure: Sudderth et al. 04
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Observation model

Figure: Observation model, (a) original image, (b) skin color, (c) edge intensity
(Sudderth et al. 04)
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Silhouette Matching: Skin Color

@ Assume RGB values at each pixel independent
@ pPokin is the histogram estimated from labeled skin pixels

@ Dpigd is the histogram estimated from hand-free background images

pc(yx) =[] pesin(t) ] porea(v) x [] pSkm( )

uEQ(x) vET\Q(x) uea(x) Pbked U

where Q(x) are the pixels in the silhouette projected from x, and T is the set
of all pixels.

@ Only evaluate likelihood ratio over prOJected silhouette

Figure: Sudderth et al. 04

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010



Edge Matching: Steered Gradient

@ Steer derivative of Gaussian response to orientation of projected hand
boundary.

® Pedge is the histogram estimated from labeled edge pixels.

® Ppigd is the histogram estimated from background images.

| %
ya‘(" - v . &) g

“a

Figure: Derivatives with respect to the horizontal and vertical axis (Sudderth et
al. 04)
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Local Likelihood Decomposition

@ If two hand components do not occlude each other, they will project to
disjoint subsets of the image

16
pc(ylx) = [[ pclylx) = [] Pskm( )_H 11 psk/n( )
i=1

EQ(x pbkgd i—1 uea(x pbkgd

@ Edge likelihood ratio decomposes similarly

@ Reasoning about self-occlusions discussed later ...

=y U/ U,

Figure: Sudderth 10
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Inferring Hand Position

@ When using kinematic and structural constraints the posterior can be
computed as

p(xly) o px(x)ps(x) | [ pc(ylxi)pe(ylxi)

i=1 Color and edge
oMo

@ Pairwise Markov Random Field

p(x|y H 77/111 Xjy Xj Hd)’(x”

(:,J)EE ey
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NBP Hand Tracker Marginal Update

Importance Sampling
@ Sample from product of all Gaussian mixtures

© Reweight samples by analytic functions (like particle filter)

Figure: Sudderth 10
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Kinematic Message Propagation

@ Start with weighted samples x,(.l) from last marginal update
@ Kinematic potential gives all valid poses equal weight
@ Sample uniformly among allowable joint angles 6.

e Compute corresponding pose of x; by forward kinematics

x; by forward |

o0

Figure: Kinematic message propagation (Sudderth 10)
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Structural Message Propagation

@ Exact: Integrate belief over all poses outside some ball centered at the
candidate pose x;

@ Approximate: Sum weights of all Gaussians with centers outside that ball

S p(xily)
i(Xj) = (X5 X dx;
mJ(xJ) a/x,- ’(/}J,I(XJ S )mji(xi) S
@ Reduces weight of particles which overlap with likely positions of

neighboring nodes )
wS(X X-)z 1 |f||q,-—qu >5i7j
AT 0 otherwise

Figure: Structural message propagation (Sudderth 10)
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Single Frame Inference

Figure: Single frame estimation (Sudderth et al. 04)
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Self Occlusion Mask

@ Condition on occlusion mask z allows exact likelihood decomposition

pe(ylx) O(H H (Pskm )'M

i=1 ueQ(x;) pbkgd( )

where the occlusion variables

I 1 if pixel u in the projection of body i is occluded
@)= 0 otherwise

r 77 ¢ ¢

zi  Qzji) oz Qxg) 2k

Figure: Sudderth 10
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Distributed Occlusion Reasoning

@ Factor graph imposes constraints ensuring occlusion consistency
@ Use BP to analytically estimate probability of pixels occlusion
V,-(u) = Pr[z,-(u) = 0]

@ Neglecting correlations among the occlusion variables, the likelihood
function (integrating over occlusions) becomes

pelyix) o I[ | viw Ll,)/ +(1 = Vi) (psk'"(u))

UEQ(x:) Pbkgd(u)

skincolor

uninformative

X ueY

Figure: Sudderth 10
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Occlusion Reasoning Example

Figure: Pose estimation (left) without and (right) with occlusion reasoning. The
middle finger is depicted in yellow and the Ring finger in pink (Sudderth et al. 04)
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Temporal Constraints and Tracking

@ Add Gaussian potentials between adjacent time steps
Y(Xe—1,is Xe,i) = N(xe-1,i[0, Ay i)

@ This can be interpreted as maximum entropy model given marginal variances
in 3D pose ...

@ ... or random walks implicitly coupled by kinematic and structural
constraints

Figure: Temporal constraints (Sudderth et al. 04)
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Tracking Hand Rotation (Sudderth et al 04)
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rotation.mpg
Media File (video/mpeg)


Tracking Finger Motion (Sudderth et al 04)
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grasping.mpg
Media File (video/mpeg)


Conclusions on structure prediction with NBP

Nonparametric Belief Propagation
@ Inference in continous, non-Gaussian graphical models
@ Very flexible, easy to adapt to diverse applications
@ Multiscale samplers lead to computational efficiency
Framework for Tracking Problems

@ Modular state representation

Graphical model of kinematics, structure, and dynamics

@ NBP may accommodate complexities such as occlusions

Many other potential applications

Code available online http : //ssg.mit.edu/nbp/
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MRF with discretization

@ Use discrete MRF to choose within a set of poses
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hand_object.mp4
Media File (video/mp4)


Approaches for Articulated Pose Estimation

Articulated pose estimation

Discriminative Approaches

-+ Allow for any image
representation

— Require large training sets

— Assume output dimensions are
independent given the inputs

Generative Approaches

+ Yield better accuracy
— Require good initialization

8 8 & 38
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Combining Generative and Discriminative

@ Discriminative and generative methods should be used together.

@ This was observed in the past, however

o [Sminchisescu et al. 06] rely on the generative only for training,
o [Rosales et al. 06] and [Sigal et al. 07] rely on the discriminative only
for initialization.

@ We would like a more principled combination of generative and
discriminative methods.
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Our Approach

1) Discriminative

—

3) Generative \ /

2) Constraints
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Discriminative Regression

y

@ Discriminative methods focus on learning an estimate f of the
mapping y = f(x) + € from training data.

@ Given a new input x,, y is computed as the prediction f(x*)

@ When y is multi-dimensional, the outputs are typically assumed to be

independent.

May 31, 2010 70 / 94
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Discriminative Regression: Limitations

@ The outputs independence assumption yields estimations that do not
satisfy some known constraints.
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Constrained Discriminative Regression

s GP (optK)

- ¥ &8 8 ig

g 8 & 3

@ We seek to improve the discriminative prediction by introducing
explicit constraints.

@ In particular, we enforce the distances between pairs of 3D points
(yj,y«) to remain constant.

min [(x.) ~ I3
subject to ||lyx — y;||3 = lj2k VU, k) EE,

where & is the set of constrained link and /; x are the known distances.
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Constrained Discriminative Regression

@ Our optimization problem is non-convex due the constraints:

ciu(y) = llyx = yjll5 = P, V0, k) € €

o We iteratively approximate the constraints cj(y) with their first order
Taylor expansion

cik(yer1) = c(ye) + Vr(ye)dye = 7 -

@ At each iteration t, we compute the constraints Jacobian matrix J;
and the constraint errors g;, and seek a displacement dy;, such that

Jidy: = g¢ .
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Constrained Discriminative Regression

@ The previous system has more unknowns than constraints.

@ Therefore it defines the family of solutions

s(ve) =ye + 78 + V{7,

where J; is the pseudo-inverse of J;,and V; contains the right
singular vectors of J; which have zero-valued singular values.
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Constrained Discriminative Regression

@ The previous system has more unknowns than constraints.

@ Therefore it defines the family of solutions

s(ve) =ye + 78 + V{7,

where J; is the pseudo-inverse of J;,and V; contains the right
singular vectors of J; which have zero-valued singular values.

@ Given the new unknowns ~y, that implicitly minimize the constraints
violation, we re-write our problem as

Ve = arngin [F(x.) = s(vo)If3 .

which has a closed-form solution.
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Algorithm

y1 = f(x.)

for t =1 to iters do
Compute the constraints Jacobian matrix J;
Compute the constraints errors g;

v, = argmin |[f(x,) — (y: + I g + V] Yoll5

yer1 =y + 378 + Vt V¢
end for
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Better Use of the Predictor

@ The approach described above depends on the predictor only through
its fixed prediction f(x.).

@ We propose to rely on the Representer theorem which states that

N
Fxa) =) aik(xi,x:) = ok,

i=1
where k is a kernel function and « is learned from the N training
examples.

@ For multi-dimensional outputs, we can write y = f(x*) = ak,, with
o € RPN,
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Better Use of the Predictor

@ We can rely more strongly on the learned predictor by treating k. as
an unknown.

@ This lets us re-write our optimization problem as
SUNTY: 2
min [[f(x.) — ok

subject to ||yx(ks«) — yj(k*)H% = lJzk , V(j, k)€€
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Better Use of the Predictor

@ We can rely more strongly on the learned predictor by treating k. as
an unknown.

@ This lets us re-write our optimization problem as
SUNTY: 2
min [[f(x.) — ok

subject to ||yx(ks«) — yj(k*)H% = lJzk , V(j, k)€€

@ Following a similar approach as before, we iteratively compute the
Taylor expansion of our constraints with respect to k..

@ This yields a family of solutions characterized as
s(ve) = - (ke + I &+ V], -

@ The optimal ~, can still be obtained in closed-form.
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Poor Use of the Image

@ One drawback of this method is that it only uses image information
through the prediction of the discriminative method.

@ The recovered pose will satisfy the constraints, but may have drifted
away from the pose depicted in the image.
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Combining Generative and Discriminative

«—
Constraints : f

S(ﬂvA;)

@ At each iteration t, given the new variable ~,, we solve

n)yitn L(-,7ve) + )\H?(x*) - S(Vt)H% )

where £(+,7,) is an image-based loss function.
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Image-based Loss Functions

In practice, we implemented 3 different image loss functions.

@ Inverse mapping
o Learn an estimate h of the mapping x = h(y) + €.

o L(%,7e) = |lxs — h(s(vo))II3.
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Image-based Loss Functions

In practice, we implemented 3 different image loss functions.

@ Inverse mapping

o Learn an estimate lAlof the mapping x = h(y) +e.
o L(x:,7:) = |Ix« = h(s(v,))I[5.

@ 3D-2D correspondences

o L(7) = |IMs(v,) — b|}5.
o Closed-form solution.
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Image-based Loss Functions

In practice, we implemented 3 different image loss functions.

@ Inverse mapping

o Learn an estimate lAlof the mapping x = h(y) +e.
o L(x:,7:) = |Ix« = h(s(v,))I[5.

@ 3D-2D correspondences

o L(7) = |IMs(v,) — b|}5.
o Closed-form solution.

@ More complete image representation

o Template matching.
o Edge information.
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Algorithm

y1 = f(x*) or ki1 =k

for t =1 to iters do
Compute the constraints Jacobian matrix J;, or J;
Compute the constraints errors g;, or g;

v, = argmin L(-,7y,) + )\Hf(x*) - S(Vt)H%

Compute yei1 =y + I g + VtT’th or ke tr1 = kit + J?Et + \7tT’Yt
end for
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Comparison with Previous Reconstructions

Discriminative Constrained Discr. Constrained Discr. + Gen.
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Our Choice of Predictor

@ In practice, we used Gaussian processes as our discriminative
predictor.

@ In this case, the basis ax can be computed in closed form as
a=Y"K1,

where Y € RNV*D is the matrix of training outputs (e.g., poses), and
K is the covariance matrix formed by evaluating the kernel function
k(xi,x;) on the training inputs.

@ Our kernel was taken to be the sum of an RBF kernel and a bias.
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Experimental Evaluation
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Reconstructing a Piece of Cardboard from 2D Locations

3000 3000

—GP

- = Constr GP
- --Constr GP + Inv GP
—Constr GP + Img

—GP

- = Constr GP
- --Constr GP + Inv GP
—Constr GP + Img

2500 2500

2000 2000
% 1 % 1
g 500 g 500
1000 1000
500 500
G0 2 4 6 8 10 00 2 4 6 8 10
Gaussian noise variance Gaussian noise variance

MSE as a function of the 2D noise variance when optimizing y (left), or k. (right).
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Reconstructing a Piece of Cardboard from 2D Locations

2500 —GP 2500 —GP
== Constr GP - = Constr GP
- --Constr GP + Inv GP - --Constr GP + Inv GP

2000 — Constr GP + Img 2000 — Constr GP + Img
%1500 5 1500
= =
1000 1000
500 500
100 200 300 400 500 600 700 100 200 300 400 500 600 700
Nb of training examples Nb of training examples

MSE as a function of the number of training examples when optimizing y (left), or k.
(right).

Raquel Urtasun (TTI-C) Discriminative prediction May 31, 2010 86 / 94



Non-Rigid Reconstruction from Pyramid HOG

1800} [Caep 2600 ap
Il Constr GP Il Constr GP
1600F [ Constr GP + Inv GP 2400 I Constr GP + Inv GP
1400 Il Constr GP + Img o000t Il Constr GP + Img
% 1200 % 2000
= = 1800
1000t 1600
800y 1400
6001 1200
o T T T T T
opty opt k opty opt k

MSE for a well-textured piece of cardboard (left) and a poorly-textured surface (right).
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Reconstructing a Piece of Paper
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paper_all_k.mp4
Media File (video/mp4)


Recovering the Pose of a Hand

Il Constr GP (opt y)
[ Constr GP + Inv GP (opt y)
1 [IConstr GP (opt k)
[ Constr GP + Inv GP (opt k)

MSE

0 L J L J L J
Steer. filters SIFT PHOG

MSE for several features.
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Human Pose Estimation

— [lap
I Il Constr GP (opt y)
[l Constr GP + Inv GP (opt y)
[ IConstr GP (opt k)
O1f
[ Constr GP + Inv GP (opt k)

5 L 7\ ]

SIFT PHOG Features of [11]

MSE for several features.

[11] Rogez et al. CVPR'08.
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Summary of constrained regression

@ We proposed an effective approach to introducing constraints in
discriminative methods.

@ We presented a principled combination of discriminative and
generative methods.

@ Our framework is valid for articulated pose estimation and deformable
shape reconstruction.

@ We demonstrated the effectiveness of our approach in the task of
hand and human body pose estimation, as well as deformable surface
reconstruction.
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Summary of the class

We have seen character animation
@ Inverse kinematics
@ NN and blending, i.e., motion graphs
@ Latent variable models

@ Physics (very little unfortunatelly)
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Summary of the class

We have seen different modules we need to choose to create our tracker

@ Generative models

o Inference techniques: particle filter vs optimization
o Likelihood models: for monocular and multi-view settings
o Priors: pose, motion, shape, physics, joint limits

@ Discriminative models

o NN

Regression

Mixture of experts
Subspace models
Structure prediction

@ Combination of generative and discriminative models
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Multi-view case in controlled environments is mostly solved
Multi-view outdoors is unsolved

Monocular tracking it's very far from been solved

There is room for a lot of research and PhD topics.

I'm still looking for PhD students... ;)
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