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Materials used for this lecture

For the exponetial map, look at F. Grassia paper entitled Practical
Parameterization of Rotations Using the Exponential Map. 1998.

For articulated chains and the inverse kinematics, these slides are
strongly based on Paolo Baerlocher thesis, EPFL 2383 (2001) entitled
Inverse kinematics techniques of the interactive posture control of
articulated figures. In particular chapter 4 and parts of chapter 5.

Some slides are also based on Steve Rotenberg’s course on
Orientation and Quaternions at UCSD.

Some figures and slides are based on the book by A. Watt and M.
Watt entitled Advanced Animation and Rendering Techniques:
Theory and practice.

For more information about quaternions see K. Shoemake tutorial at
siggraph 1985 entitled Animating Rotation with Quaternion Curves.
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Some useful definitions: kinematics

Definition

Kinematics is the study of motion independent of the underlying forces
that produced that motion.

It includes position, velocity and acceleration...

... which are all geometrical and time-related properties of motion.

In contrast with dynamics, which specify the causes of motion.
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Some useful definitions: articulated figure

Definition

An articulated figure is a structure that consists of a series of rigid links
connected at joints.

Figure: (left) A simple 2 link structure. (right) Articulated human figure. [Watt]
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Some useful definitions: DOF

Definition

The number of degrees of freedom (DOF) of an articulated structure is
the number of independent position variables necessary to specify the state
of the structure.

Figure: A manipulator with 3 degrees of freedom [Watt]
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Some useful definitions: end effector

Definition

The free end of an open chain of links is called an end effector.

The head, hands and feet for example in a human.

Figure: Illustration of an end-effector. [Baerlocher01]
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Some useful definitions: state vector

Definition

The state space of an articulated figure is the vector space of all possible
configurations.

A set of independent parameters defining the positions, orientations
and rotations of all the joints that form the articulated figure forms a
basis of the state space.

The articulated figure configuration is described by the state vector

Θ = (θ1, θ2, · · · , θN)

where in this case the articulated figure has N degrees of freedom.

The dimensions of the state space are usually the DOF of the
articulated figure.

Animating an articulated figure reduces to finding an N-dimensional
path in its state space.
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Types of joints

Rotation joints:

Revolute joints
Flexion/extension joints
Ball-and-socket joints
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Revolute joint

Simplest joint that allows rotational motion

Rotation occurs along a single axis: usually flexion or twist.

Parameterized in terms of a single DOF, θ, such that R(θ)

Typically used for the interphalangeal joints of the hands

Figure: A simple revolute joint. [Baerlocher01]
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Flexion/extension joints

Generalization of the revolute joint to 2 DOF.

Typically used for the elbow and knee joints.
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Ball-and-socket joints

Consist on three DOF. It’s the more mobile of the purely rotational
joints

It has very different parameterizations

Figure: A Ball-and-socket joint. [Baerlocher01]

Raquel Urtasun (TTI-C) Human Body Representations March 1, 2010 12 / 65



Parameterization of the ball-and-socket joint

Different types of parameterization

Euler angle
Axis angles, also known as exponential map or versor
Swing and twist
Quaternions

No single parameterization is best.

It depends on the application, e.g., quaternions for interpolation, axis
angles for inverse kinematics.

All three DOF parameterizations have at least one singularity.
Quaternions do not have at the cost of been a four DOF
parameterization.
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Euler angles: definition

The most popular parameterization of orientation space.

A general rotation is described as a sequence of rotations about three
mutually orthogonal coordinate axes fixed in the space.

The rotations are applied to the space and not to the axis.

Figure: Principal rotation matrices: Rotation along the x-axis. [Watt]
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Euler angles: definition

The most popular parameterization of orientation space.

A general rotation is described as a sequence of rotations about three
mutually orthogonal coordinate axes fixed in the space.

The rotations are applied to the space and not to the axis.

Figure: Principal rotation matrices: Rotation along the z-axis. [Watt]
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Euler angles: composition

General rotations can be done by composing rotations over these axis.

For example, let’s create a rotation matrix R(θx , θy , θz) in terms of the joint
angles θx , θy , θz .

R(θx , θy , θz) = Rx · Ry · Rz =


cy cz cy sz −sy 0

sxsy cz − cxsz sxsy sz + cxcz sxcy 0
cxsy cz + sxsz cxsy sz − sxcz cxcy 0

0 0 0 1


with si = sin(θi ), and ci = cos(θi ).

Matrix multiplication is not conmutative, the order is important

Rx · Ry · Rz 6= Rz · Ry · Rx

Rotations are assumed to be relative to fixed world axes, rather than local to
the object
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Euler angles: drawbacks I

Gimbal lock: This results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom.
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Euler angles: drawbacks I

Gimbal lock: This results when two axes effectively line up, resulting in a
temporary loss of a degree of freedom. This is a singularity in the
parameterization. θ1 and θ3 become associated with the same DOF.

R(θ1,
π

2
, θ3) =


0 0 −1 0

sin(θ1 − θ3) cos(θ1 − θ3) 0 0
cos(θ1 − θ3) sin(θ1 − θ3) 0 0

0 0 0 1



Figure: Singular locations of the Euler angles parametrization (at β = ±π/2)
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Euler angles: drawbacks II

The parameterization is non-linear.
The parameterization is modular R(θ) = R(θ + 2πn), with n ∈ Z .
The parameterization is not unique

∃[θ4, θ5, θ6] such that R(θ1, θ2, θ3) = R(θ4, θ5, θ6)

with θi 6= θ3+i for all i ∈ {1, 2, 3}.

Figure: Example of two routes for the animation of the block letter R [Watt]

.
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Euler’s Theorem

Theorem

Euler’s theorem: Any two independent orthonormal coordinate frames
can be related by a sequence of rotations (not more than three) about
coordinate axes, where no two successive rotations may be about the same
axis.

This means that we can represent an arbitrary orientation as a
rotation about some unit axis by some angle (4 numbers) (Axis/Angle
form).

Alternately, we can scale the axis by the angle and compact it down
to a single 3D vector (Rotation vector)

Quaternions and axis angles are possible parameterizations.

Raquel Urtasun (TTI-C) Human Body Representations March 1, 2010 18 / 65



Angular displacement

We define the concept of angular displacement given by R(θ,n). This is a
rotation of θ along the n axis.

Figure: Angular displacement (θ,n) [Watt]
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Quaternions

Quaternions were invented by W.R.Hamilton in 1843.

A quaternion has 4 components

q = [qw , qx , qy , qz ]T

They are extensions of complex numbers a + ib to a 3D imaginary
space, ijk.

q = qw + qx i + qy j + qzk

With the additional properties

i2 = j2 = ijk = −1

i = jk = −kj, j = ki = −ik, k = ij = −ji

To represent rotations, only unit length quaternions are used

|q|2 =
√

q2
w + q2

x + q2
y + q2

z

This forms the surface of a 4D hypersphere of radius 1.
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Quaternions

Quaternions form a group whose underlying set is the four
dimensional vector space R4, with a multiplication operator ◦ that
combines both the dot product and cross product of vectors

The identity rotation is encoded as q = [1, 0, 0, 0]T .

The quaternion q = [qw , qx , qy , qz ]T encodes a rotation of
θ = 2 cos−1(qw ) along the unit axis v̂ = [qx , qy , qz ].

Also a quaternion can represent a rotation by an angle θ around the v̂
axis as

q = [cos
θ

2
, sin

θ

2
v̂]

with v̂ = v
|v| .

If v̂ is unit length, then q will also be.

Proof: Exercises.
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Quaternion to rotational matrix

To convert a quaternion q = [qw , qx , qy , qz ] to a rotational matrix
simply compute

1− 2q2
y − 2q2

z 2qxqy + 2qw qz 2qxqz − 2qw qy 0
2qxqy − 2qw qz 1− 2q2

x − 2q2
z 2qy qz + 2qw qx 0

2qxqz + 2qw qy 2qy qz − 2qw qx 1− 2q2
x − 2q2

y 0
0 0 0 1


A matrix can also easily be converted to quaternion. See references
for the exact algorithm.

Raquel Urtasun (TTI-C) Human Body Representations March 1, 2010 22 / 65



Interpretation of quaternions

Any incremental movement along one of the orthogonal axes in curved space
corresponds to an incremental rotation along an axis in real space (distances
along the hypersphere correspond to angles in 3D space)

Moving in some arbitrary direction corresponds to rotating around some
arbitrary axis

If you move too far in one direction, you come back to where you started
(corresponding to rotating 360 degrees around any one axis)

A distance of x along the surface of the hypersphere corresponds to a
rotation of angle 2x radians

This means that moving along a 90 degree arc on the hypersphere
corresponds to rotating an object by 180 degrees

Traveling 180 degrees corresponds to a 360 degree rotation, thus getting you
back to where you started

This implies that q and -q correspond to the same orientation
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Quaternion operations: dot product

The dot product of quaternions is simple their vector dot product

p · q = pwqw + pxqx + pyqy + pzqz = |p||q| cosφ

The angle between two quaternions in 4D space is half the angle one
would need to rotate from one orientation to the other in 3D space.
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Quaternion operations: multiplication

Multiplication on quaternions can be done by expanding them into
complex numbers

pq =< s · t − v ·wT , sw + tv + v ×w >

where p = [s, v]T , and q = [t,w].

If p represents a rotation and q represents a rotation, then pq
represents p rotated by q.

Note that two unit quaternions multiplied together will result in
another unit quaternion.

Quaternions extend the planar rotations of complex numbers to 3D
rotations in space
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Quaternion operations: others

Inverse of a quaternion q = [s, v]T

q−1 =
1

|q|2
[s,−v]T

Any multiple of a quaternion gives the same rotation because the
effects of the magnitude are divided out.

Very good for interpolation, Slerp. We will see this later in the class.
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Exponential map or axis-angle

The exponential map maps a vector in <3 describing the axis and
magnitude of a three DOF rotation to the corresponding rotation

There are different parameterizations of the exponential map.

We can formulate an exponential map from <3 to S3 as follows:

exp(v) =

{
[0, 0, 0, 1]T if v = 0;∑inf

m=0(1
2 ṽm) = [sin(1

2θ)v̂, cos(1
2θ)]T if v 6= 0.

where θ = |v|, and v̂ = v/|v|.
This maps v to the union quaternion representing a rotation of θ
about v.

The singularity of this parameterization is when v→ 0.
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Robust exponential maps

The singularity of this parameterization is when v→ 0.

q = exp(v) = [sin(
1

2
θ)v̂, cos(

1

2
θ)]T

By arranging the terms we can write

q = exp(v) = [sin(
1

2
θ)

v

θ
, cos(

1

2
θ)]T = [

sin(1
2θ)

θ
v, cos(

1

2
θ)]T

This is the sinc function

sin(1
2θ)

θ
= sinc(

1

2
θ)

Use tailor expansion to compute it if not in standard math libraries

sin(1
2θ)

θ
≈ 1

2
+
θ2

48
− θ4

25 · 5!
+ · · ·

Good exercise to compute it
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Axis-angle to matrix

To generate a matrix as a rotation θ around an arbitrary unit axis v̂:
v̂2
x + cθ(1− v̂2

x ) v̂x v̂y (1− cθ) + v̂zsθ v̂x v̂z(1− cθ)− v̂y sθ 0
v̂x v̂y (1− cθ)− v̂zSθ v̂2

y + cθ(1− v̂2
y ) v̂y v̂z(1− cθ) + v̂xsθ 0

v̂x v̂z(1− cθ) + v̂y sθ v̂y v̂z(1− cθ)− v̂xsθ v̂2
z + cθ(1− v̂2

z ) 0
0 0 0 1


where cθ = cos(θ), and sθ = sin(θ).

We can now easily apply rotations to vectors

In the case of the scaled axis-angle, one has to first extract the magnitude
and then rotate along the normalized axis.
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Redundancy of the parameterizations

The parameterizations that we have seen:

Rotational matrix: 9 DOF. It has 6 extra DOF.
Axis angles: 3 DOF for the scaled version and 4 DOF for the
non-scaled. The latter has one extra DOF.
Quaternions: 4 DOF, 1 extra DOF.

From the Euler theorem we know that an arbitrary rotation can be
described with only 3 DOF, so those parameters extra are redundant.

For rotational matrix, we can impose additional constraints if the
matrix represent a rigid transform

|a| = |b| = |c | = 1

a = b × c, b = c × a, c = a× b
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Encoding translation

We are using 4× 4 matrices since those can also do translation.
cy cz cy sz −sy tx

sxsy cz − cxsz sxsy sz + cxcz sxcy ty
cxsy cz + sxsz cxsy sz − sxcz cxcy tz

0 0 0 1


with si = sin(θi ), and ci = cos(θi ), and t = [tx , ty , tz ]T a translation
vector.

Translation can also be encoded in quaternions.

Raquel Urtasun (TTI-C) Human Body Representations March 1, 2010 31 / 65



Back to articulated chains

An articulated structure is a set of rigid bodies connected by joints.

A distinction can be made between closed-chain structures, that contain
loops, and loop-free open-chain structure:

Closed-chain structures, also known as parallel manipulators in robotics, are
more difficult to handle and are not considered in this class.

Loops can be ensured in a open-chain structure by means of kinematic
constraints

Figure: Illustration of an articulated chain. [Baerlocher01]
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Hierarchical representation

An open-chain structure can be represented by a hierarchy (or tree) of
nodes, that represent either a joint or a segment.

Figure: Human hierarchy. [Baerlocher01]

Raquel Urtasun (TTI-C) Human Body Representations March 1, 2010 33 / 65



Hierarchical representation

An open-chain structure can be represented by a hierarchy (or tree) of
nodes, that represent either a joint or a segment.

This introduces a parent-child relationship among the nodes, where
each node has a single parent, except the ancestor of all other nodes,
which is the root of the hierarchy.

Each node is placed with respect to its parent node by a local
transformation.

The root is fixed with respect to a global reference frame, but can be
positioned at will in order to place the figure in the world (global
motion)

In a human model, the pelvis is typically chosen as the root node but
sometimes this may be inappropriate and the hierarchy must be
re-rooted.

Raquel Urtasun (TTI-C) Human Body Representations March 1, 2010 33 / 65



Types of animation

Kinematic methods: which describes the motion but not the causes

Direct kinematics: specify trajectories along time
inverse kinematics: specify goals and or end-effectors

Dynamic methods: specify the causes, e.g., laws of physics
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Direct kinematics

The advantage of a tree structure is that the direct kinematics
problem is very easily solved by a recursive traversal of the tree,
starting from the root, and evaluating and concatenating the local
transformation matrices.

The body posture can be modified simply by changing the local
transformation matrix of each joint node.

This allows any posture to be set for the articulated figure, even
unfeasible ones since arbitrary rotations and translations can be
specified.

We will see later on the course how to express and enforce joint limits
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Direct kinematics

Consider an articulated chain consisting of n links connected by n − 1
joints.

The aim of direct kinematics is to determine the end-effector
position and orientation as a function of the joint variables (i.e.,
rotation and translation).

The Denavit-Hartenberg convention allows constructing direct
kinematics by composing the transformations into one homogeneous
transformation matrix.

T 0
n = A0

1 · A1
2 · A2

3 · · ·An−1
n

where Ai−1
i is the local transformation from joint i − 1 to joint i .

This can be applied to any open kinematic chain.
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Illustration of direct kinematics

Figure: Direct kinematics with T 0
n = A0

1 · A1
2 · A2

3 · · ·An−1
n in (a) planar case, (b)

3D world.
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Inverse kinematics

Given articulated structure represented with the state vector q, the inverse
kinematic problem is to determine a solution to the following non-linear
equation

x(q) = g

where x(q) and g are m-dimensional vectors expressed in the so-called task
space.

This expression can integrate as many equations as you want just by
stacking them together.

Typically x(q) represents the position and orientation of an end-effector
frame, while g is the goal to be reached.

Since a single solution might not necessary exist, we reformulate the problem
as minimizing the following residual error

e(q) = ||x(q)− g||2

Since x(q) is generally non linear, it cannot be solved in general by inversion
of x(q).
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Iterative solution: Newton-Raphon method

Problem formulation
min

q
e(q) = ||x(q)− g||2

Is an iterative procedure based on a linearization of the constraint equation
about an initial point qo , that results in a Jacobian matrix.

By inverting the Jacobian, the resulting set of linear equations can be solved
for an increment ∆q.

A step on that direction is taken to a new configuration qi that approaches
the solution of the task equation.

By iteratively repeating this process, the system converges towards a local
solution of the residual error.
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Linearization of the task equation

At iteration i , a first-order linear approximation of the task function using
Taylor series expansion around the current configuration is computed

x(qi + ∆q) = x(qi ) + J(qi )∆q + · · ·
where J(q) is the m × n Jacobian matrix of x(q)

Keeping only the linear terms

∆x ≈ J(qi )∆q

where ∆x = g − x(qi ) is a known desired task increment, and ∆q is the
unknown increment in the joints.

Then the next configuration is computed as

qi+1 = qi + ∆q

Because of the non-linearity of the task function, the approximation only
holds for ”small” task increments.

The error introduce is error = ∆x−
(
x(qi+1)− x(qi )

)
If the error is too large, the path will be erratic → Use line search.
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Computing the Jacobian

The Jacobian is a multi-dimensional form of the derivative, that maps small
changes of q to small changes of the task coordinates x

dx = J(q)dq

The (i , j) component can be computed as

J(q)i,j =
∂xi (q)

∂qj

This can be computed analytically or by finite differences

∂xi (q)

∂qj
=

xi (q + ∆qj)− xi (q)

∆qj

When the number of joints and tasks is high, the analytic determination of
the Jacobian is a tedious task.
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Examples of tasks: position of end-effector

Position control of an end-effector.

It has a translation Jacobian JT (q)

dxT = JT (q)dq

If the end-effector belongs to a particular subtree, the position will be
indepedent of other subtrees and the partial derivatives with respect to those
will be independent.

Figure: Absolute position control of the origin and an end-effector frame.
[Baerlocher01]
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Examples of tasks: orientation of end-effector

The orientation of an end-effector can also be controlled.

Multiple choices for the parameterization.

One solution is to solve it at the differential level, without relying in a
particular parameterization of orientation.

The infinitesimal variation of rotation

dxR = ωdt,

where t is the time and ω is the velocity vector.

The rotation Jacobian is then

dxR = JR(q)dq
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Examples of tasks: task for loops

Ensuring loops is useful since they cannot be defined in a tree-structured
body model.

Given two end-effectors E1 and E2, the goal is to make their position coincide

xT1,T2(q) = xT1(q)− xT2(q) = 0

where xTi is the absolute position of the i-th end-effector.

Figure: Joining two end-effectors E1 and E2. [Baerlocher01]
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Examples of tasks: task for loops

Figure: Joining two end-effectors E1 and E2. [Baerlocher01]

The Jacobian for this task is
JT1 − JT2

An analogous task can be formulated between the orientation of two
end-effectors.
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Examples of tasks: control center of mass

Provided that the mass properties are known for each segment of the
articulated figure, the position xG of its center of mass Gtot can be
constrained as another end-effector.

dxG = JG (q)dq

Figure: Constraining the center of mass. [Baerlocher01]
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Rank of the Jacobian

An important characteristic of a Jacobian is its rank.

The rank of a matrix is the number of linearly independent rows or columns.

It can also be computed as the number of singular values that are different
from zero.

The rank can be reduced by parametric singularities, e.g., gimbal lock.

Singularities can also occur when the end-effector reaches the limits of its
workspace. The Jacobian becomes singular as the end-effector cannot move
anymore in the direction normal to the boundary.

This last singularity cannot be removed since it’s inherent to the problem.

Singularities complicate the inversion process.

One useful tool is the Singular Value Decomposition (SVD) since it provides
orthonormal bases for the fundamental subspace of a matrix.
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A bit of algebra: fundamental subspaces

Let J be a m × n matrix. We can associate its range R(J) and its null space
N(J) defined by

R(J) = {v ∈ <m | ∃w ∈ <n, J ·w = v}
N(J) = {v ∈ <n | J · v = 0}

The range is the subspace that can be ”reached” by applying J, and it’s
dimension is called the rank.

The null space is the subspace that maps to the null vector, it’s dimension
is call the nullity.

N(J)⊥ = R(JT ), R(J)⊥ = N(JT )

where R(J)⊥ and N(J)⊥ are the orthogonal complements.
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Singular value decomposition (SVD)

The SVD of an m × n matrix J with rank r is defined as

J = UΣVT

where U = [u1, · · · ,um] is an m ×m orthogonal matrix of left singular
vectors, V = [v1, · · · , vm] is an n × n orthogonal matrix of right singular
vectors, and Σ is an m × n matrix

Σ =


σ1 · · · 0 0

0
. . . 0 0

0 · · · σr 0
0 · · · 0 0


with δi the i-th singular value, which is always positive.
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Singular value decomposition (SVD)

The columns of matrices U and V span the four fundamental subspaces
associated with matrix J.

BR(J) = [u1, · · · ,ur ]

BR(J)⊥ = [ur+1, · · · ,um]

BN(J)⊥ = [v1, · · · , vr ]

BN(J) = [vr+1, · · · , vn]

The Jacobian can also be written as

J = BR(J)DBT
N(J)⊥ =

r∑
i=1

σiuiv
T
i

with D = diag([σ1, · · · , σr ]).
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Solving the linear system

Once J and ∆x have been computed, we can solve for the increment ∆q.

If the Jacobian is a square matrix, then we could simply

∆q = J−1∆x

However, the number of constraints m is usually smaller than the number of
degrees of freedom n. In this case the solution is not unique.

If m > n then the system is over-constrained. In this case NO exact solution
exists, and the residual error J∆q−∆x cannot be zero.

In this two cases additional criteria should be specified.
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A least-squares solution

The solution can be partitioned into two orthogonal subspaces: N(J), that
provides the set of solutions that do not contribute to the problem ∆x, and
its orthogonal complement N(J)⊥ that does.

A general solution is composed of two terms: a particular solution + an
homogeneous solution that can be used to satisfy other criteria.

∆q = ∆qls + ∆qhomo

The particular solution can be obtained by least-squares as

∆qls = J†∆x

where J† = is the pseudo-inverse.

The least square solution is the solution of

min ||J∆q−∆x||2
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The homogeneous solution

In the case of and under-constrained problem, it’s orthogonal complement
N(J) contains additional components that by definition do not affect the
satisfaction of the task.

The homogeneous solution is then

∆qhomo = PN(J)z = (In − J†J)z

where PN(J) is the n × n orthogonal projection operator on N(J), and
z ∈ <n is an arbitrary vector.
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The general solution

The general solution can be written as

∆q = J†∆x + PN(J)z

Figure: The two components of the general solution. [Baerlocher01]

The vector z can be exploited to satisfy another criteria h(q) and when linear

z = λ∇h(q)

with λ > 0 a positive scalar.
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The need for regularization

The major drawback of least-squares is that in the proximity of a singularity
the problem is ill-posed. The norm of the resulting solution may tend to
infinity.

Once solution is to use regularization.

There exist many other techniques, we will focus on the simple damped
least-squares.
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Damped least-squares

Combines the residual error with a regularization term such that now the
problem becomes

min ||J∆q−∆x||22 + λ2||∆q||22
with λ the damping factor, which weights the influence of the
regularization vs the residual error.

The damped least-squares inverse can be computed as

J† = JT (JJT + λ2Im)−1

with Im the identity matrix of size m ×m.

Some of the properties of the pseudo-inverse do not hold in the damped
version.
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Damped least-squares

Figure: Comparison of the least-squares and damped least-squares function as a
function of the scalar value σ. The least-squares function is discontinuous at the
singularity σ = 0, while the damped least-squares is not. [Baerlocher01]
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Enforcing different priorities

In general conflicts arise and not all the constraints can be simultaneously
satisfied.

Two strategies:

Find a compromise solution according to weights assigned to each task
in order to represent their importance.
Arbitrate a conflict on the basis of a predefined priority order, creating
a hierarchical relation between tasks.

We define the p tasks, each with its goal gi as

xi (q) = gi , i = 1, · · · , p
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Dealing with multiple tasks

Let the different task be

x(q) =

 x1(q)
· · ·

xp(q)

 and g =

 g1

· · ·
gp


then we can define the Jacobian

J =

 J1

· · ·
Jp

 with ∆x =

 ∆x1

· · ·
∆xp


where Ji = dxi (q)/dq, and ∆xi = gi − xi (q)

The least squares is the the minimizer of

e(q) = ||x(q)− g||2 =

√√√√ p∑
i=1

ei (q)2

with ei (q) = ||xi (q)− gi ||2 the residual error of the i-th task.
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Weighting the residuals

We can improve the control over the least square solution by including a
weighting

e(q) =

√√√√ p∑
i=1

wiei (q)2

where wi > 0 is the scalar weight associated with the i-th task.

This can be solved similarly by transforming:

J′i =
√

wiJi

∆x′i =
√

wi∆xi

Ideally one would like to have the weights related to the residual errors such
that

wjej(q∗) = wkek(q∗)

but this is not possible in general.

Simple weighting doesn’t allow for a clear prioritization → No task is
satisfied.
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Strategies for task-priority

Partitioning: is a simple but crude approach that allocates each joint solely
to teh task with highest priority among those depending on that joint. Bad
results when the number of joints shared by several tasks is high.

Figure: Partitioning strategy [Baerlocher01]
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Strategies for task-priority

Partitioning: is a simple but crude approach that allocates each joint solely
to teh task with highest priority among those depending on that joint. Bad
results when the number of joints shared by several tasks is high.

Priority: When all the task can be satisfied they are. Otherwise the top
priority task reaches its goal without being perturbed, while the residual
error on the other task is minimize.

Figure: Priority strategy [Baerlocher01]
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Formulation for the task-priority

The different priorities can be achieved by setting

∆q = J†1∆x1 + PN(J1)z

where we set z to satisfy the other priorities.

z = (J2PN(J1))
†(∆x2 − J2J†1∆x1)

This is known as constrained least-squares solution.

This can be rewritten as

∆q = J†1∆x1 + J̄†2∆̂x2

where

J̄2 = J2PN(J1)

∆̂x2 = ∆x2 − J2J†1∆x1

This formulation has problems with singularities.
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A more stable formulation

This new formulation is to avoid singularities

The secondary solution J†2∆x2 is first evaluated separately, and then
projected into N(J1) to remove the components that would interfere with
the high priority task

∆q = J†1∆x1 + PN(J1)(J†2∆x2)

This scheme is called Cascaded control, and can be further extended to
add additional constraints

∆q = J†1∆x1 + PN(J1)(J†2∆x2 + PN(J2)z)

Raquel Urtasun (TTI-C) Human Body Representations March 1, 2010 63 / 65



Comparison of priority strategies
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More?

If you want to learn more, look at the additional material

Otherwise, do the research project on this topic!

Next week we will do machine learning to learn useful low-dimensional
representations
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