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Materials used for this lecture

L. Herda, R. Urtasun and P. Fua. Hierarchical Implicit Surface Joint
Limits for Human Body Tracking. In Computer Vision and Image
Understanding, (CVIU) 2005.

L. Herda, R. Urtasun, P. Fua, A. Hanson. Automatic Determination
of Shoulder Joint Limits using Quaternion Field Boundaries.
International Journal of Robotics Research (IJRR), 22(6): 419 - 436,
2003.
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Contents of today’s lecture?

We will look into:

Generative approaches to pose estimation

We will focus on joint limit priors
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Notation

φ — the state
I – the image

x – the latent representation
N — number of training samples

In:0 — image observations up to time n
yn:0 — poses up to time n
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The problem of human pose estimation

The goal is given an image I to estimate the 3D location and orientation of
the body parts y.
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Challenges of pose estimation

Poor imaging: motion blurred, occlusions, cluttered, etc.

Non-convex problem: multimodal solutions
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Pose estimation

Generative approaches: focus on modeling

p(φ|I) =
p(I|φ)p(φ)

p(I)

Discriminative approaches: focus on modeling directly

p(φ|I)

Today we will talk about generative approaches.
Later in the class we will cover discriminative approaches.
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Generative approaches

Generative approach models

p(φ|I) =
p(I|φ)p(φ)

p(I)

Types of generative approaches:

Bayesian approaches: focus on approximating p(φ|I), usually via sampling
(e.g., particle filter).

Optimization or energy-based techniques: focus on computing the MAP
or ML estimate of p(φ|I).

Common to all of them is the need to model

Image likelihood: p(I|φ)

Priors: p(φ)

In general p(I) is assumed constant and ignored. The different trackers then

depend on the different modeling choices and optimization procedures.
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Particle filter revisited

The posterior density is described with three terms

p(φn|In:0) =
p(In|φn)p(φn|In−1:0)

p(In|In−1:0)

Prior: defines the knowledge of the model

p(φn|In−1:0) =

∫
p(φn|φn−1)p(φn−1|In−1:0)dφn−1

Likelihood: p(In|φn) determines the measurement noise model

Evidence: which involves

p(In|In−1:0) =

∫
p(In|φn)p(φn|In−1:0)dφn
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Optimization techniques

It is defined as minimizing the following programs:

φ∗ML = argmin
φ

− log p(I|φ)

φ∗MAP = argmin
φ

− log p(I|φ)− log p(φ)

It suffers from the following problems:

Local minima: usually − log p(I|φ) is a non-convex function of φ.

Initialization: usually hand initialized or use discriminative approaches.

Drift: As times goes, the estimate gets worst.

Difficult to define a good general − log p(I|φ).

Usually computationally more efficient than particle filter (if not use GPU).

This can be combined with particle filter to create hybrid monte-carlo.
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In the next lectures we will look at ...

Priors: p(φ)

Joint limits

Shape priors

Pose priors

Dynamical priors

Physics

Likelihood models: p(I|φ)

Monocular tracking: 2D-3D correspondences, silhouettes, edges,
template matching, etc.

Multi-view tracking: stereo, visual hull, etc.

Note that I have defined φ as a general quantity, not just the pose.
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Priors already cover in the class

Priors already seen in class:

Pose prior: Dimensionality reduction techniques

Dynamics priors: LDS, HMMs.

Today we will look into joint limits
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Joint limits

We will look into increasing complexity of joint limits

Min-max euler angles

Joint sinus cones

Spherical polygons

Triangular Bezier patches

Implicit surface representation of limits

Hierarchical joint limits: e.g., elbow limits depends on the shoulder
rotations.
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Min-max joint limits

We are going to talk about 3 dof joints.

Ranges on three independent axis rotations.

Problem: it is not realistic

Figure: Min-Max joint limits
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Typical values of min-max limits for shoulder

Around x-axis [-90,100] Around y-axis [-30,180]

Around z-axis [-90,90]
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Joint sinus cones

Joint sinus cones (Engin and Chen, 1989): only limit swing

Figure: Illustrations from (Maurel and Thalmann, 1998)
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Spherical polygons

Limits angular rotation and defines local twist ranges (Korein, 1985).
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spoly.mpg
Media File (video/mpeg)



Triangular Bezier patches

Limits angular rotation and defines twist versus elevation (Tolani et
al., 2000).
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Desired properties

Joint limits should ...

define motion boundaries for swing AND twist.

easily allow to determine whether a rotation is valid or not.

be applicable to any joint.

incorporate coupling between joints
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A data-driven approach to joint limits

Figure: (Herda, Urtasun and Fua, 2004)
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Capture

Measure joint motion using optical motion capture

Strategically placed markers.

Cover entire range of motion if possible.

Figure: Vector representation of quaternions for shoulder motion
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Boundary representation

Find the boundary of the data that represents the joint limits

Choose a representation:

Implicit surfaces

Mesh
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Mesh representation

Explicit representation (triangles, polygons)

Computationally costly

High storage cost
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Implicit surfaces I

are smooth and continuous

have an analytical expression

use few parameters

can be locally influenced, to capture shape detail
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Implicit surfaces II

A 3D implicit surface with spherical primitives is defined by:

a centre or skeleton (x, y, z)

a radius or thickness (e)

a stiffness (k)
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Implicit surfaces III

Each spherical primitive has an energy field around it, defined by a field
function fi (Tsingos et al., 1995):

fi (P) =


−ki r + kiei + 1 if r ∈ [0, ei ]
1
4 [ki (r − ei )− 2]2 if r ∈ [ei ,Ri ]

0 otherwise

where r = d(P,Si ), and Ri = ei + 2
Ki

is the radius of influence.
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Implicit surfaces III

The surface is the level set of all primitives:

f (P) =
N∑

i=1

fi (P)

Figure: Isocurves of implicit surfaces
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Illustration of representing joint limits

Figure: Fitting implicit surfaces to volumetric data

Raquel Urtasun (TTI-C) Pose estimation April 26, 2010 28 / 61



Applications to character animation

Use projective gradient descent and move in the direction of

center of mass

global gradient

sphere of highest influence

Figure: Fitting implicit surfaces to volumetric data
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Animation results

Raquel Urtasun (TTI-C) Pose estimation April 26, 2010 30 / 61


nolimitprofile_abduction.mp4
Media File (video/mp4)


no_limits_flexion_extension.mpg
Media File (video/mpeg)


nolimits_twist.mpg
Media File (video/mpeg)


limitprofile_abduction.mp4
Media File (video/mp4)


limits_flexion_extension.mp4
Media File (video/mp4)


limits_twist.mpg
Media File (video/mpeg)



Inter-subject variance

Figure: (left) Male vs (right) Female. The average inter-point distance is
0.0314± 0.04 for the male and 0.0403± 0.05 for the female.
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Modeling coupling joints

We will focus on the upper arm

Coupled sterno-clavicular (clavicular) and gleno-humeral (shoulder) joints (2
DOF + 3 DOF)

Coupled shoulder and elbow joints (3 DOF + 2 DOF)

Figure: Coupling between joints. (left) sterno-clavicular, (right) shoulder-elbow.
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Modeling coupling joints

We will focus on the upper arm

Coupled sterno-clavicular (clavicular) and gleno-humeral (shoulder) joints (2
DOF + 3 DOF)

Coupled shoulder and elbow joints (3 DOF + 2 DOF)

Figure: Clavicular joint contributes to 1/3rd of shoulder elevation, until it reaches
its limit

Raquel Urtasun (TTI-C) Pose estimation April 26, 2010 32 / 61


abd-add.mpg
Media File (video/mpeg)


flex-exten.mpg
Media File (video/mpeg)



Motion measurements

Strategically placed markers, around clavicular, shoulder and elbow
joints.
Measure the coupled ranges of motion of

the shoulder and elbow joints
the clavicular and shoulder joints
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Limits captured
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rotate_GH_quat_data_from_sho_elb.mp4
Media File (video/mp4)


rotate_elbow_quat_data.mp4
Media File (video/mp4)


rotate_new_SC_quat_data.mp4
Media File (video/mp4)


rotate_GH_quat_data_from_clav_sho.mp4
Media File (video/mp4)



Hierarchical joint limits

Re-use voxelisation to create parent joint clusters.

For each such cluster, create a child joint implicit surface.

Problems for clavicle and elbow joint rotations:

Surface-like quaternions are not readily voxelisable.
So-defined implicit surface not directly applicable.
Convert to Euler angles with one zero component.
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Quaternions and equivalent Euler angle rotations
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rotate_elbow_quat_data.mp4
Media File (video/mp4)


rotate_new_SC_quat_data.mp4
Media File (video/mp4)


rotate_elbow_euler_data.mp4
Media File (video/mp4)


rotate_new_SC_euler_data.mp4
Media File (video/mp4)



Without coupling shoulder and elbow
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Without coupling clavicle and shoulder
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Hierarchical joint limits

Lower-resolution voxelisation of parent joint data, respectively clavicle
and shoulder joints.

For each sub-set of child joint data points

Approximate by an implicit surface.
Refine voxelisation by morphing for better joint limits continuity.
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horse_rabbit_head.mpg
Media File (video/mpeg)


smooth_transitions.mpg
Media File (video/mpeg)



Example for child joint limits
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Morphing_union_of_spheres_elbow.mp4
Media File (video/mp4)


Morphing_union_of_spheres_shoulder.mp4
Media File (video/mp4)



Hierarchical clavicular/shoulder joints
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hierarchical_limits_clav_shoulder_abduction.mp4
Media File (video/mp4)



Hierarchical clavicular/shoulder joints II
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hierarchical_limits_clav_shoulder_flexion.mp4
Media File (video/mp4)



Hierarchical shoulder/elbow joints I
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hierarchical_limits_shoulder_elbow_part1_short.mp4
Media File (video/mp4)



Hierarchical shoulder/elbow joints
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hierarchical_limits_shoulder_elbow_part2_short.mp4
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Application to character animation I

Figure: (left) Unconstrained. (right) Constrained animation.
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random_shoulder_elbow_motion_unconstrained_part1.mpg
Media File (video/mpeg)


random_shoulder_elbow_motion_constrained_part1.mpg
Media File (video/mpeg)



Application to character animation II
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tennis_off_limits_original_file_short.mp4
Media File (video/mp4)


tennis_with_shoulder_elbow_morphing_limits_short.mp4
Media File (video/mp4)



Application to character animation III
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are_you_crazy_off_limits_original_file.mp4
Media File (video/mp4)


are_you_crazy_shoulder_elbow_morphing_limits.mp4
Media File (video/mp4)



Application to character animation IV
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are_you_crazy_by_Ali.mp4
Media File (video/mp4)


are_you_crazy_by_Ali_clav_shoulder_morphing_limits.mp4
Media File (video/mp4)



Application to video-based motion capture

Input data: Stereo

Model: Articulated skeleton, were each body part is an ellipsoidal primitive
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digiclops_data_decimated.mpg
Media File (video/mpeg)



Application to video-based motion capture

Input data: Stereo

Model: Articulated skeleton, were each body part is an ellipsoidal primitive

Optimization with multiple constraints

Weighting strategy: give the constraint a higher weight, but yields
composite solution.
Task priority strategy: find a posture that satisfies the joint limits

Figure: (left) Weighting strategy. (right) Priority strategy (Baerlocher01)
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Video-based motion capture I

Figure: (left) Unconstrained tracking.

Figure: Tracking with joint limit priors
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1_composite_images_unconstrained.mpg
Media File (video/mpeg)


1_QT_unconstrained_no_metaballs.mp4
Media File (video/mp4)


1_QT_unconstrained.mp4
Media File (video/mp4)


sequence1_jointeditor_no_limits.mp4
Media File (video/mp4)


1_composite_images_constrained.mpg
Media File (video/mpeg)


1_QT_constrained_no_metaballs.mp4
Media File (video/mp4)


1_QT_constrained.mp4
Media File (video/mp4)


sequence1_jointeditor_with_limits.mpg
Media File (video/mpeg)



Detailed comparison I
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Video-based motion capture II

Figure: (left) Unconstrained tracking.

Figure: Tracking with joint limit priors
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TrackingWithoutConstraints2.mpg
Media File (video/mpeg)


2_QT_unconstrained_no_metaballs.mp4
Media File (video/mp4)


2_QT_unconstrained.mp4
Media File (video/mp4)


AnimationWithoutConstraints2.mp4
Media File (video/mp4)


TrackingWithConstraints2.mp4
Media File (video/mp4)


2_QT_constrained_no_metaballs.mp4
Media File (video/mp4)


1_QT_constrained.mp4
Media File (video/mp4)


AnimationWithConstraints2.mp4
Media File (video/mp4)



Detailed comparison II
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Video-based motion capture III

Figure: (left) Unconstrained tracking.

Figure: Tracking with joint limit priors
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TrackingWithoutConstraints3.mpg
Media File (video/mpeg)


3_QT_unconstrained_no_metaballs.mp4
Media File (video/mp4)


ModelAndStereoWithoutConstraints3.mpg
Media File (video/mpeg)


AnimationWithoutConstraints3.mpg
Media File (video/mpeg)


TrackingWithConstraints3.mpg
Media File (video/mpeg)


3_QT_constrained_no_metaballs.mp4
Media File (video/mp4)


ModelAndStereoWithConstraints3.mpg
Media File (video/mpeg)


AnimationWithConstraints3.mpg
Media File (video/mpeg)



Detailed comparison III
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Video-based motion capture IV

Figure: (left) Unconstrained tracking.

Figure: Tracking with joint limit priors
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TrackingWithoutConstraints7.mpg
Media File (video/mpeg)


7_QT_unconstrained_no_metaballs2.mp4
Media File (video/mp4)


ModelAndStereoWithoutConstraints7.mp4
Media File (video/mp4)


AnimationWithoutConstraints7.mpg
Media File (video/mpeg)


TrackingWithConstraints7.mpg
Media File (video/mpeg)


7_QT_constrained_no_metaballs2.mp4
Media File (video/mp4)


ModelAndStereoWithConstraints7.mp4
Media File (video/mp4)


AnimationWithConstraints7.mpg
Media File (video/mpeg)



Detailed comparison IV
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Video-based motion capture V

Figure: (left) Unconstrained tracking.

Figure: Tracking with joint limit priors
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6_composite_images_unconstrained.mpg
Media File (video/mpeg)


6_QT_unconstrained_no_metaballs.mp4
Media File (video/mp4)


6_QT_unconstrained.mp4
Media File (video/mp4)


sequence6_jointeditor_no_limits.mp4
Media File (video/mp4)


6_composite_images_constrained.mpg
Media File (video/mpeg)


6_QT_constrained_no_metaballs.mp4
Media File (video/mp4)


6_QT_constrained.mp4
Media File (video/mp4)


sequence6_jointeditor_with_limits.mpg
Media File (video/mpeg)



Detailed comparison V
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Conclusions

Joint limits constrain any type of motion capture.

For 3 DOF joints, includes all motion components, i.e. inter-joint
coupling.

Extension to coupled joints.

Implicit expression allows rapid validation and differentiation.
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More?

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will look into image likelihoods and shape priors
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