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Materials used for this lecture

Slides about pictorial structures adapted from Daniel Huttenlocher’s
slides.

See references when ever cited in the slides.
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Contents of today’s lecture?

We will look into generative approaches to pose estimation. We will focus
on:

image likelihoods
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The problem of human pose estimation

The goal is given an image I to estimate the 3D location and orientation of
the body parts y.
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Pose estimation

Generative approaches: focus on modeling

p(φ|I) =
p(I|φ)p(φ)

p(I)

Discriminative approaches: focus on modeling directly

p(φ|I)

Today we will talk about generative approaches.
Later in the class we will cover discriminative approaches.
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Generative approaches

Generative approach models

p(φ|I) =
p(I|φ)p(φ)

p(I)

Types of generative approaches:

Bayesian approaches: focus on approximating p(φ|I), usually via sampling
(e.g., particle filter).

Optimization or energy-based techniques: focus on computing the MAP
or ML estimate of p(φ|I).

Common to all of them is the need to model

Image likelihood: p(I|φ)

Priors: p(φ)

In general p(I) is assumed constant and ignored. The different trackers then

depend on the different modeling choices and optimization procedures.
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In the next lectures we will look at ...

Priors: p(φ)

Joint limits

Shape priors

Pose priors

Dynamical priors

Physics
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In this lecture we will look at ...

Likelihood models: p(I|φ)

Monocular tracking: 2D-3D correspondences, silhouettes, edges,
template matching, etc.

Multi-view tracking: stereo, visual hull, etc.

Note that I have defined φ as a general quantity, not just the pose.
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Monocular tracking

2D tracking

Pictorial structures

3D tracking

Silhouettes

Skeleton

Edges

2D to 3D correspondences

Optical flow
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Pictorial structures

Local models of appearance with non-local geometric or spatial
constraints

Image patches describing color, texture, etc
2D spatial relations between pairs of patches

Simultaneous use of appearance and spatial information since simple
part models alone too non-distinctive

Figure: Pictorial structures (Felzenszwalb and Huttenlocher 04)
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History of pictorial structures

Pictorial structures date from early 1970s

Practical recognition algorithms proved difficult.

Purely geometric models widely used through early 1990s based on
combinatorial matching to image features.

Appearance based models also developed: Templates or patches of
image, lose geometry.

Other part-based models, but not seen in the class.
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Definition of pictorial structures

The pictorial structure is represented by the following variables:

Set of parts V = {v1, · · · , vn} and L = (l1, · · · , ln) specifies the
configuration of the parts.

A = (a1, · · · , an) are appearance parameters.

The relation between parts is a Random field.

The edges ei ,j ∈ E represent the connexion between different
neighboring parts, which express the explicit dependencies.

The connection parameters C = {ci ,j | ∀ei ,j ∈ E}
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Learning and Inference in pictorial structures

The model is defined as M = (A,E,C).

Learning the model M is performed from labeled example images
I1, · · · , Im and configurations L1, · · · ,Lm.

Typically a parametric form of A and C is employed.

e.g., ai constant color rectangle: learn the average color and variation.
e.g., ci,j : relative translation of parts: learn the average position and
variation.

Inference: Find most likely location L for the parts in I, or multiple
highly likely locations.

Inference is done by evaluating the image likelihood: how likely it is
that model is present.

The state is φ = L.
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Standard Bayesian approach

The state is φ = L and the model M = (A,E,C).

Estimate posterior distribution p(φ|I,M).

Find maximum (MAP) or high values (sampling).

Generative tracking

p(φ|I,M) ∝ p(I|φ,M)p(φ|M)

which is composed of likelihood p(I|φ,M) and the prior p(φ|M).
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Class of Models I

The computational difficulty depends on the posterior distribution.

One can exploit the structure of the graph G = (V,E) which represents a
Markov Random Field (MRF), each node explicitly depends on its
neighbors.

If G is a tree:

Natural for models of animate skeletons
Prior can be computed efficiently
Prior on relative location

p(φ|E,C) =
∏

E

p(li , lj |ci,j )
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Class of Models II

Image likelihood is usually the product of individual likelihoods

p(I|φ,M) =
∏

i

p(I|li , ai )

Good approximation when parts dont overlap.

The form of connections is also important: space with deformation
distance

p(li , lj |ci ,j ) = N (Ti ,j (li )− Tj ,i (li ), |0,Σi ,j )

is a normal distribution in a transformed space

Ti ,j and Tj ,i capture ideal relative locations of parts and Σi ,j

measures deformation.

It’s the Mahalanobis distance in transformed space (weighted squared
Euclidean distance).
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Bayesian formulation of learning

Supervised learning: we are given example images I1, · · · , Im with
configurations L1, · · · ,Lm.

Obtain estimates of the model given i.i.d. samples

max
M

p(I1, · · · , Im,L1, · · · ,Lm|M) =
∏

k

p(Ik ,Lk |M)

Rewrite joint probability as product of appearance and dependencies
separate

max
M

∏
k

p(Ik |Lk ,A)
∏

k

p(Lk |E,C)
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Learning models efficiently

Estimating appearance p(Ik |Lk ,A) is typically done by ML estimation

E.g., for constant color patch use Gaussian model, computing mean
color and covariance

Estimating dependencies p(Lk |E,C)

Estimate C for pairwise locations p(li,k , lj,k |ci,j ).
E.g., for translation compute mean offset between parts and variation
in offset.
Best tree using minimum spanning tree (MST) algorithm. It
computes the pairs with smallest relative spatial variation
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Example: Generic face model

Each part ai is a local image patch represented as response to
oriented filters

Pairs of parts constrained in terms of their relative (x , y) position in
the image.

Consider two models: 5 parts and 9 parts

5 parts: eyes, tip of nose, corners of mouth
9 parts: eye split into pupil, left side, right side
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Learned face model

Appearance and structure parameters learned from labeled frontal
views.

Structure captures pairs with most predictable relative location least
uncertainty

Gaussian (covariance) model captures direction of spatial variations
differs per part
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Example: Generic Person Model

Each part represented as rectangle with fixed width, varying length:
Learn average and variation.
Connections approximate revolute joints: joint location, relative
position, orientation, foreshortening.
Learned 10 part model: All parameters learned including joint
locations

Figure: Pictorial structures learned for a human (Felzenszwalb and Huttenlocher
04)
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Bayesian formulation of recognition I

Given model M and image I, seek good configuration L.

This can be done by MAP estimation maxL p(L|I,M) or by sampling.

Brute force solutions intractable: With n parts and s possible discrete
locations per part, O(sn).
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Bayesian formulation of recognition II

However, we can use the graph structure (MRF) such that

max
L

p(L|I,M) = max
L

∏
v

p(I|li , ai )
∏

E

p(li , lj |ci,j )

Taking logarithms we have

min
L
− log p(L|I,M) = min

L

∑
v

mj (lj ) +
∑

E

di,j (li , lj )

Typically dynamic programming is used to solve this efficiently by recursively
computing

Bj (li ) = min
lj

mj (lj ) + di,j (li , lj ) +
∑

Cj

Bc (lj )


where Cj are the children of node j

The running time is now O(ns2) for n parts and s locations.
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Recognizing Faces

Generic model of frontal view

Using learned 5- and 9-part models
Local oriented filters for parts
Relatively small spatial variation in part locations
Similar overall size and orientation of face

MAP estimation to find best match

Posterior estimate of configuration L is accurate because parts do not
overlap
Consider all possible locations in image
Very efficient: runs in real time
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Examples of detections

Figure: Examples of detected faces (Felzenszwalb and Huttenlocher 04)
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Recognizing People

Frontal view models

Generic model using binary rectangles for parts match to ”difference
image”.
Specific model using color rectangles for parts: match to original image.

Sampling posterior to find good matches: posterior estimate of L can
be high for several configurations due to overlap of parts.

Generate good possible matches as hypotheses:locations with
p(L|I,M) is large.
Validate using another technique: here using Chamfer distance, a
correlation like measure.
Use best of 200 samples search over all locations runs in under minute.
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Samples from the posterior

Figure: Examples of posterior samples (Felzenszwalb and Huttenlocher 04)
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Recognizing people with clutter

Figure: Examples of detected humans (Felzenszwalb and Huttenlocher 04)
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Recognizing a variety of poses

Figure: Examples of detected poses (Felzenszwalb and Huttenlocher 04)
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Model of specific person

Figure: Examples of detected humans (Felzenszwalb and Huttenlocher 04)
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Extensions of pictorial structures

(Ramanan 06) model them with Conditional Random Fields (CRFs), casting
of visual inference as an iterative parsing process, where one sequentially
learns better and better features tuned to a particular image.

Hallucinate occlusions

Figure: Pictorial structures with CRFs (Ramanan 06)

Raquel Urtasun (TTI-C) Image Likelihood May 6, 2010 31 / 60



Learning appearance model

Figure: Learning pictorial structures (Ramanan 06)
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Monocular tracking

2D tracking

Pictorial structures

3D tracking

Silhouettes

Skeleton

Edges

2D to 3D correspondences

Optical flow

For 3D tracking we represent the likelihood in terms of error functions

− log p(I|φ) = E

with E a combination of error functions
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Silhouettes: area of overlap

Silhouettes are typically obtained from background substraction

Two types of likelihood function

Area of overlap
Fit the inside of the silhouette: distance transform

Figure: Silhouettes (Sminchisescu et al 02)
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Area of overlap

Maximize the model to image silhouette area of overlap

Ealign =
1

2σ2
alig

f (
∑
t∈Vt

(Sa − Sg )2)

where Sg is the area of the target silhouette, and Sa is the area of the
silhouette of the projected surface. f since otherwise we would like to
maximize.
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Silhouettes and distance transform

Pushes the model inside the image silhouette

Edist =
1

2σ2
dist

∑
i

esi (ri (x),Sg )

where i ranges over all projected model nodes, and esi is the distance
from a predicted model point ri (x) to a given silhouette Sg .

esi can be estimated by computing the distance transform D of the
silhouette Sg and evaluating it in the points i

esi (ri (x), Sg ) = D(ri (x))
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Distance transform

One typical example is to define

d(x,P) = min
y∈P
||x− y||22

where P is a set of points.

Figure: Distance transform from silhouettes (Felzenszwalb et al 04)

Figure: Distance transform from silhouettes (Sminchisescu et al 02)
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Influence of both silhouette terms

Figure: Model estimation based on various silhouette terms original images (a,e),
initial models (b,f), silhouette attraction term only (c,g), silhouette attraction and
area overlap terms (d,h)(Sminchisescu et al 02)
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Skeleton

Represent directly the projection of the skeleton into the image by
evaluating the new distance transform.

Eskel =
1

2σ2
skel

∑
i

D(ri (x))

Figure: Skeleton representation (Sminchisescu et al 02)
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Edges

Minimize the distance of the projected edges to the image edges.

Do the search incrementally

Figure: Edge search (Sminchisescu et al 02)

More robust to miss-alignements by using a distance transform

Figure: Edge distance transform (Felzenszwalb et al 04)
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2D to 3D correspondences

Minimize the distance between the projection of the 3D model and the
tracked 2D points.

E2D =
1

2σ2
2D

J∑
j=1

||mj − P(pj (φ))||22

with mj the j-th 2D tracked point, and P(pj (φ)) the projection of a 3D
point pj which is a function of the state φ.

Figure: 2D to 3D correspondences (Urtasun et al. 06)
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An alternative error function

An alternative parameterization is in 3D using the line of sight: Plucker lines

This can be used for 2D to 3D correspondences or for silhouettes

Figure: 2D to 3D correspondences and edges (Ilic et al. 07)
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Optical flow I

Optical flow is the pattern of apparent motion of objects, surfaces, and
edges in a visual scene caused by the relative motion between the camera
and the scene.

Optical flow methods try to calculate the motion between two image frames
which are taken at times t and t + δt at every voxel position

Assuming small movements and doing a Taylor expansion of first order

I(x + δx , y + δy , t + δt) ≈ I(x , y , t) +
∂I

∂x
∂x +

∂I

∂y
∂y +

∂I

∂t
∂t

From these equations it follows that

∂I

∂x
vx +

∂I

∂y
vy +

∂I

∂t
= 0

with vx = δx
δt and vy = δy

δt the components of the optical flow.

This is usually written as
∇IT v = −It
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Optical flow II

Build 2D to 3D correspondences between consecutive frames

Eflow =
1

2σ2
flow

∑
i

||vi − d(φ)||22

where vi is an estimate of the flow, and d relates the point in the
model at the previous instance with the new time instance.

Figure: Optical flow
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Multiview tracking

Monocular likelihoods independent for every camera

Stereo

Shape from silhouettes

3D to 3D correspondences

Shape from shadows
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Stereo

Stereo: shape from motion between two views

It requires camera calibration for the internal parameters and
correspondences

Figure: Estimation depth with stereo (Grauman)
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Stereo likelihood

The stereo reconstruction error can be computed as

Estereo =
1

2σ2
stereo

dist(M,S)

where S is the stereo cloud and M is the 3D model.

Figure: Skeleton fitting to stereo data (Plaenkers et al 03)
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Shape from silhouettes

The visual hull is the volume created by shape-from-silhouette 3D
reconstruction.

It assumes the foreground object in an image can be separated from
the background, and segmented into a silhouette.

The silhouette defines a back-projected generalized cone that contains
the actual object. This cone is called a silhouette cone.

Figure: Visual hull
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Shape from silhouettes

The visual hull is the volume created by shape-from-silhouette 3D
reconstruction.

It assumes the foreground object in an image can be separated from
the background, and segmented into a silhouette.

The silhouette defines a back-projected generalized cone that contains
the actual object. This cone is called a silhouette cone.

The visual hull error can be computed as

Ehull =
1

2σ2
hull

dist(M,H)

with M the shape representation of the 3D model and H the visual
hull.
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Problems of Shape from silhouettes

Require a 3D reconstruction step → time consuming
Fail when silhouette information is used with only few cameras

!"#$%&'()*&&

+,-").%/%+&
0")+1&2).34#(,%+&

5&6#*%(#+&

7,+.#-&8.--&

Figure: Ballan et al 08
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3D to 3D correspondences

The error function will simply be

E3D =
1

2σ2
3D

M∑
i

||mi − pi (φ)||22

where mi and pi are two points in correspondence.

Figure: 3D to 3D correspondences (Stark and Hilton 05 and 07)
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Examples of 3D to 3D correspondences

Raquel Urtasun (TTI-C) Image Likelihood May 6, 2010 52 / 60


tracking_jog.mp4
Media File (video/mp4)



Shape from shadows

Create an additional camera by detecting the shadow under strong
illumination conditions

Figure: 3D from shadows (Balan et al 07)
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Some impressive tracking results

Figure: Ballan et al 08
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intro_somersault.mp4
Media File (video/mp4)



Some impressive tracking results

Figure: Ballan et al 08
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verticale.mp4
Media File (video/mp4)



Some impressive tracking results

Figure: Ballan et al 08
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Soccer_single.mp4
Media File (video/mp4)



Some impressive tracking results

Figure: Ballan et al 08
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Soccer_unpublished.mp4
Media File (video/mp4)



Some impressive tracking results

Figure: Ballan et al 08
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Boxe_unpublished.mp4
Media File (video/mp4)



Some impressive tracking results

Figure: Ballan et al 08
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Media File (video/mp4)



More?

Multi-view tracking in control environments is more or less solve

More complex interactions between multiple subjects

Outdoor environments are still challenging

Monocular tracking is unsolved

If you want to learn more, look at the additional material.

Otherwise, do the research project on this topic!

Next week we will look into physical priors
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