Learning \& Inference in Graphical Models Monday, March 28, 2011

Instructors: Raquel Urtasun (rurtasun@ttic.edu) Tamir Hazan (tamir@ttic.edu)

- Monday, Wednesday, Friday I:30-2:20
http://ttic.uchicago.edu/~rurtasun/courses/GraphicalModels/graphical models.html

Course Outline

- Book: Probabilistic Graphical Models, Daphne Koller, Nir Friedman (in library)
- Part I:Models

Chapter 2: Basic Notions.
Chapter 3: Bayesian Networks.
Chapter 4: Undirected Graphical Models.

Course Outline

- Part II: Inference

Chapters 9\&I0\&II: Exact Inference
Chapter 12: Sampling methods for Inference.
Chapter I3: MAP inference

Course Outline

- Part III: Learning

Chapter 17: Parameters Estimation
Chapter I8: Learning Structure
Chapter 19: Partially Observed Data

- Causality: Chapter 21 (if time permits)

Course load

- Homework: 50% of the grade.

6-7 exercises.
2 programming exercises.

- Exam: 50% of the grade.
- No mid-term exam.

Background - Probability

- The confidence that an event will occur
"there is a 30% chance of rain"
"Tossing coin, there is a 50% probability for 'head""
- Probability Space:
I) What are the possible events?

2) How we measure each event?

Probability

- What are the possible outcomes ?

Coin toss: $\Omega=$ \{"head","tail"\}
Die: $\Omega=\{1,2,3,4,5,6\}$

- Event is subset of outcomes $S \subset \Omega$:

Examples for die: $\{1,2,3\},\{2,4,6\}, \ldots$

- How we measure each event?

Probability function.

Probability Function

- Assign non-negative weight for atomic events
- Probability of event $S \subset \Omega$

$$
P(S)=\sum_{\omega \in S} P(\omega)
$$

Examples for die: $P(\{2,4,6\})=P(2)+P(4)+P(6)$

- Claim: $P\left(S_{1} \cup S_{2}\right)=P\left(S_{1}\right)+P\left(S_{2}\right)-P\left(S_{1} \cap S_{2}\right)$

Probability Function

- Overall weight is one $\sum_{\omega \in \Omega} P(\omega)=1$

Coin: P ("head") + P("tail")=I
Die: $P(I)+P(2)+P(3)+P(4)+P(5)+P(6)=I$

Conditional Probability

- SI,S2 are independent if

$$
P\left(S_{1} \cap S_{2}\right)=P\left(S_{1}\right) P\left(S_{2}\right)
$$

- Conditional Probability: $\quad S \subset \Omega$

$$
P\left(S_{1} \mid S\right)=P\left(S_{1} \cap S\right) / P(S)
$$

- Claims: $\sum_{\omega \in S} P(\omega \mid S)=1$

If SI, S are independent then $P\left(S_{1} \mid S\right)=P\left(S_{1}\right)$

Conditional Probability

- Claim (Chain Rule):

$$
P\left(S_{1} \cap S_{2} \cap \cdots \cap S_{n}\right)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) \cdots P\left(S_{n} \mid S_{1}, \ldots, S_{n-1}\right)
$$

Joint distribution

- Given two spaces: Ω_{1}, Ω_{2} (e.g. coin, die, two dice)
- Joint probability function

$$
P\left(\omega_{1}, \omega_{2}\right) \geq 0, \quad \sum_{\omega_{1} \in \Omega_{1}, \omega_{2} \in \Omega_{2}} P\left(\omega_{1}, \omega_{2}\right)=1
$$

- Induces marginal probability functions

$$
P\left(\omega_{1}\right)=\sum_{\omega_{2} \in \Omega_{2}} P\left(\omega_{1}, \omega_{2}\right)
$$

Random Variable

- A random variable is a function, which maps events or outcomes (e.g., the possible results of rolling two dice: (I, I), (I, 2), etc.) to real numbers (e.g. their sum)
- A discrete random variable have a discrete set of values

$$
X(\omega) \in\left\{r_{1}, \ldots, r_{n}\right\}
$$

- A discrete random with n value induces a probability space with n elements.

$$
P(r)=P(X=r)=P(\{\omega: X(\omega)=r\})
$$

Joint Distribution

- Two random variables induce a joint distribution

$$
P\left(r_{1}, r_{2}\right)=P\left(X_{1}=r_{1}, X_{2}=r_{2}\right)=P\left(X_{1}=r_{1} \text { and } X_{2}=r_{2}\right)
$$

- Joint distribution induces a marginal distribution

$$
P\left(X_{1}=r_{1}\right)=\sum P\left(X_{1}=r_{1}, X_{2}=r_{2}\right)
$$

- Two random variables are independent $X_{1} \perp X_{2}$ if

$$
P\left(X_{1}=r_{1}, X_{2}=r_{2}\right)=P\left(X_{1}=r_{1}\right) P\left(X_{2}=r_{2}\right)
$$

Conditional Distribution

- Conditional distribution:

$$
P\left(X_{1} \mid X_{2}=r_{2}\right)=P\left(X_{1}, X_{2}=r_{2}\right) / P\left(X_{2}=r_{2}\right)
$$

- Claim: If two random variables are independent then

$$
P\left(X_{1} \mid X_{2}\right)=P\left(X_{1}\right)
$$

- Three random variables are conditionally independent $X_{1} \perp X_{2} \mid X_{3} \quad$ if

$$
P\left(X_{1}=r_{1}, X_{2}=r_{2} \mid X_{3}=r_{3}\right)=P\left(X_{1}=r_{1} \mid X_{3}=r_{3}\right) P\left(X_{2}=r_{2} \mid X_{3}=r_{3}\right)
$$

Expectation,Variance

- Expectation $\mathbb{E}[X]=\sum_{r} P(X=r) \cdot r$
- Variance

$$
V[X]=\sum_{r} P(X=r)(r-\mathbb{E}[X])^{2}=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

Continuous Random Var

- A continuous random variable have has a density function $f(r)$

$$
P\left(X(\omega) \in\left[r_{1}, r_{2}\right]\right)=\int_{r_{1}}^{r_{2}} f(r)
$$

- Expectation

$$
\mathbb{E}[X]=\int_{r} f(r) \cdot r
$$

- Variance

$$
V[X]=\mathbb{E}\left[X^{2}\right]-(\mathbb{E}[X])^{2}
$$

Graphs

vertex / node

- $G=(V, E)$
- The edges are not directed (called undirected graph)
- undirected graph without cycles is called tree

Direct Graphs

- Directed graph without cycles is direct a cyclic graph (DAG)

