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Part I: Models

Chapter 2: Basic Notions.

Chapter 3: Bayesian Networks.

Chapter 4: Undirected Graphical Models.

Course Outline
Book: Probabilistic Graphical Models, 
Daphne Koller, Nir Friedman (in library)
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Course Outline

Part II: Inference

Chapters 9&10&11: Exact Inference 

Chapter 12: Sampling methods for Inference.

Chapter 13: MAP inference
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Course Outline

Part III: Learning

Chapter 17: Parameters Estimation

Chapter 18: Learning Structure

Chapter 19: Partially Observed Data

Causality: Chapter 21 (if time permits)

Wednesday, March 30, 2011



Course load

Homework: 50% of the grade.
6-7 exercises.
2 programming exercises.

Exam: 50% of the grade.

No mid-term exam.
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Background - Probability

The confidence that an event will occur

“there is a 30% chance of rain” 

“Tossing coin, there is a 50% probability for 
‘head’ ”

Probability Space:

1) What are the possible events?

2) How we measure each event?

Wednesday, March 30, 2011



Probability

What are the possible outcomes ?

Coin toss:           {“head”, “tail”}

Die:         {1,2,3,4,5,6}

Event is subset of outcomes             :

Examples for die: {1,2,3},  {2,4,6}, ...

How we measure each event?

Probability function.

Ω =
Ω =

S ⊂ Ω
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Probability Function

Assign non-negative weight for atomic events

Probability of event 

Examples for die: P({2,4,6}) = P(2)+P(4)+P(6)

Claim: 

S ⊂ Ω

P (S) =
�

ω∈S

P (ω)

P (S1 ∪ S2) = P (S1) + P (S2)− P (S1 ∩ S2)
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Probability Function

Overall weight is one

Coin: P(“head”) + P(“tail”)=1

Die:   P(1)+P(2)+P(3)+P(4)+P(5)+P(6)=1

�

ω∈Ω

P (ω) = 1
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Claims: 

            If S1,S are independent then 

Conditional Probability

S1,S2 are independent if

P (S1 ∩ S2) = P (S1)P (S2)

Conditional Probability: S ⊂ Ω

P (S1|S) = P (S1 ∩ S)/P (S)
�

ω∈S

P (ω|S) = 1

P (S1|S) = P (S1)
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Claim (Chain Rule):

Conditional Probability

P (S1 ∩ S2 ∩ · · · ∩ Sn) = P (S1)P (S2|S1) · · · P (Sn|S1, ..., Sn−1)
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Given two spaces:                     (e.g. coin, die, two dice)

Joint distribution
Ω1,Ω2

Joint probability function 

Induces marginal probability functions 

P (ω1,ω2) ≥ 0,
�

ω1∈Ω1,ω2∈Ω2

P (ω1,ω2) = 1

P (ω1) =
�

ω2∈Ω2

P (ω1,ω2)
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Random Variable

A discrete random variable have a discrete set of values 

X(ω) ∈ {r1, ..., rn}
A discrete random with n value induces a probability 
space with n elements.

P (r) = P (X = r) = P ({ω : X(ω) = r})

A random variable is a function, which maps events or 
outcomes (e.g., the possible results of rolling two dice: 
(1, 1), (1, 2), etc.) to real numbers (e.g. their sum)
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Joint Distribution

Two random variables are independent                  ifX1⊥X2

Two random variables induce a joint distribution

P (r1, r2) = P (X1 = r1, X2 = r2) = P (X1 = r1 and X2 = r2)

P (X1 = r1, X2 = r2) = P (X1 = r1)P (X2 = r2)

Joint distribution induces a marginal distribution

P (X1 = r1) =
�

r2

P (X1 = r1, X2 = r2)
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Conditional Distribution

Claim: If two random variables are independent then

Conditional  distribution: 

Three random variables are 
conditionally independent                      if 

P (X1 = r1, X2 = r2|X3 = r3) = P (X1 = r1|X3 = r3)P (X2 = r2|X3 = r3)

X1⊥X2|X3

P (X1|X2) = P (X1)

P (X1|X2 = r2) = P (X1, X2 = r2)/P (X2 = r2)
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Expectation, Variance
Expectation E[X] =

�

r

P (X = r) · r

Variance

V [X] =
�

r

P (X = r)(r − E[X])2 = E[X2]− (E[X])2
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Continuous Random Var
A continuous random variable have has a density 
function f(r)

P (X(ω) ∈ [r1, r2]) =
� r2

r1

f(r)

Expectation

Variance

E[X] =
�

r
f(r) · r

V [X] = E[X2]− (E[X])2
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Graphs

vertex / node

edge

G=(V,E)

The edges are not directed (called undirected graph)

undirected graph without cycles is called tree
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Direct Graphs

Directed graph without cycles is direct a cyclic graph 
(DAG)
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