Learning & Inference in Graphical Models
Monday, March 28, 2011

Instructors: Raquel Urtasun (rurtasun@ttic.edu)
Tamir Hazan (tamir@ttic.edu)

» Monday, Wednesday, Friday 1:30-2:20

http://ttic.uchicago.edu/~rurtasun/courses/GraphicalModels/graphical models.html
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Course Outline

» Book: Probabilistic Graphical Models,
Daphne Koller, Nir Friedman (in library)

® Part |: Models
Chapter 2: Basic Notions.
Chapter 3: Bayesian Networks.

Chapter 4: Undirected Graphical Models.
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Course Outline

® Part ll: Inference
Chapters 9&10&1 | : Exact Inference
Chapter 12: Sampling methods for Inference.

Chapter |3: MAP inference
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Course Outline

® Part lll: Learning
Chapter |7: Parameters Estimation
Chapter 18: Learning Structure

Chapter 19: Partially Observed Data

» Causality: Chapter 21 (if time permits)
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Course load

® Homework: 50% of the grade.
6-7 exercises.
2 programming exercises.

® Exam: 50% of the grade.

® No mid-term exam.
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Background - Probability

® The confidence that an event will occur
“there is a 30% chance of rain”

“Tossing coin, there is a 50% probability for
(head’ ’»

® Probability Space:

|) What are the possible events!

2) How we measure each event!
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Probability

® What are the possible outcomes ?
Coin toss: () = {“head”,“tail’”’}
Die: () = {l,2,3,4,5,6}

® Event is subset of outcomes S C ) :

Examples for die: {1,2,3}, {2,4,6}, ...

* How we measure each event!

Probability function.
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Probability Function

® Assign non-negative weight for atomic events

® Probability of event S — )

P(5) =Y Pw)

weS

Examples for die: P({2,4,6}) = P(2)+P(4)+P(6)
® Claim: P(Sl U Sg) = P(Sl) + P(SQ) — P(Sl A SQ)
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Probability Function

» Overall weight is one Z Pw) =1
wel

Coin: P(“head”) + P(“tail”)=1
Die: P(1)+P(2)+P(3)+P(4)+P(5)+P(6)=1I




Conditional Probability

»® S1,S2 are independent if

P(S1NS3) = P(S1)P(S>2)

» Conditional Probability: S C
P(51|S) = P(51NS)/P(S)

» Claims: Z P(w|S) =1
weS

If S1,S are independent then P(S5,|5) = P(S;)
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Conditional Probability

® Claim (Chain Rule):

P(S1NSoN---NS,) = P(S1)P(S5]S1) - - P(Sn|S1, s Sn_1)




Joint distribution

® Given two spaces: (), () (e.g. coin, die, two dice)
® Joint probability function

P(wi,wq) >0, Z Plwi,ws) =1

w1 €€ ,wa €L

® Induces marginal probability functions

P(w)) = » P(wi,ws)

wo €829
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Random Variable

® A random variable is a function, which maps events or
outcomes (e.g., the possible results of rolling two dice:
(1, 1), (1, 2), etc.) to real numbers (e.g. their sum)

® A discrete random variable have a discrete set of values
X(w) €{ryy..,mn}

® A discrete random with n value induces a probability
space with n elements.

Piry=P(X=7r)=PHw: X(w) =r})
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Joint Distribution

® Two random variables induce a joint distribution
P(ri,r9) = P(X1 =r1,Xo =1r9) = P(X; =71 and X5 =13)
® Joint distribution induces a marginal distribution
P(Xy=r1) =Y P(X1=r1,Xs=rs)
s Two random variables are independent X1 X5 if

P(Xl :Tl,XQZTQ):P(Xl :Tl)P(XQZTQ)
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Conditional Distribution

® Conditional distribution:

P(X1 X2 :Tz) :P(Xl,XQ :Tg)/P(XQ :Tz)

® Claim: If two random variables are independent then
P(X1|Xs2) = P(X4)

® Three random variables are
conditionally independent X 1 X,| X3 if

P(X1 :7"1,X2 :TQ‘X?):TB) :P(X1 :7“1’X3:7“3)P(X2:7“2‘X3:7“3)
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Expectation, Variance

® Expectation *E[X] — Z P(X — T) T

® Variance

2[X])°

0 X4 — (E




Continuous Random Var

® A continuous random variable have has a density
function f(r)

P(X() € i) = [ e

® Expectation N
80x) = [ £0) -
2

® Variance V[X] = E[X?] — (E[X])*




vertex / node

edge
o G:(\/’E)
® The edges are not directed (called undirected graph)

® undirected graph without cycles is called tree
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Direct Graphs

#® Directed graph without cycles is direct a cyclic graph
(DAG)

Wednesday, March 30, 2011



