Probabilistic Graphical Models

Raquel Urtasun and Tamir Hazan

TTI Chicago

April 22, 2011

This week we saw...

- Variable elimination algorithm can be used to compute $P(\mathbf{Y})$, $P(\mathbf{Y}, \mathbf{e})$ and $P(\mathbf{Y}|\mathbf{e})$.
- Finding the optimal ordering for VE is NP-hard.
- For chordal graphs, we can construct an optimal ordering via de clique tree or the max-cardinality algorithm.

Algorithm 9.3 Maximum Cardinality Algorithm for constructing an elimination ordering

```
Procedure Max-Cardinality (

\mathcal{H}
// An undirected graph over \mathcal{X}

)

1
Initialize all nodes in \mathcal{X} as unmarked

2
for k = |\mathcal{X}| \dots 1

3
\mathcal{X} \leftarrow unmarked variable in \mathcal{X} with largest number of marked neighbors

4
\pi(\mathcal{X}) \leftarrow k

5
Mark \mathcal{X}

6
return \pi
```

- It uses the fact that observing certain variables can simplify the elimination process.
- If the variable was not observed, we can
 - Use a case analysis to enumerate all the possibilities.
 - Perform the VE on the simplified graphs.
 - Aggregate the results for the different values.
- This offers no advantage with respect to the VE algorithm in terms of operations.
- But it does in terms of memory.
- Time-Space tradeoff.

More formally...

- Let's consider the case of a Markov network.
- Let Φ be the set of factors over \mathcal{X} and P_{ϕ} the associated distribution.
- All the observations already assimilated in Φ .
- The goal is to compute $P_{\Phi}(\mathbf{Y})$ for some query \mathbf{Y} .
- Let $\mathbf{U} \subseteq \mathcal{X}$ be a set of variables, then

$$\hat{P}_{\Phi}(\mathbf{Y}) = \sum_{\mathbf{y}\in \mathit{Val}(\mathbf{U})} \hat{P}_{\Phi}(\mathbf{Y},\mathbf{u})$$

- Each term P̂_Φ(Y, u) can be computed by marginalizing out X − U − Y in the unnormalized measure P̂_Φ[u].
- The reduce measure is obtained by reducing the factors to the context **u**.
- The reduced process has smaller cost in general.

Conditioning Algorithm

- We construct a network $\mathcal{H}_{\Phi}[\mathbf{u}]$ for each assignment \mathbf{u} .
- Note that these networks have the same structure, but different parameters.
- Run sum-product VE for each of the networks.
- Sum the results to obtain $\hat{P}_{\Phi}(\mathbf{Y})$.

Algorithm 9.5 Conditioning algorithm Procedure Sum-Product-Conditioning Φ , // Set of factors, possibly reduced by evidence Y, // Set of query variables U // Set of variables on which to condition for each $u \in Val(U)$ 1 $\Phi_{\boldsymbol{u}} \leftarrow \{\phi[\boldsymbol{U} = \boldsymbol{u}] : \phi \in \Phi\}$ 23 Construct $\mathcal{H}_{\Phi_{n}}$ $(\alpha_{\boldsymbol{u}}, \phi_{\boldsymbol{u}}(\boldsymbol{Y})) \leftarrow \text{Cond-Prob-VE}(\mathcal{H}_{\Phi_{\boldsymbol{u}}}, \boldsymbol{Y}, \emptyset)$ 4 $\phi^*(Y) \leftarrow \frac{\sum_u \phi_u(Y)}{\sum_{u \in U} \alpha_u}$ 5Return $\phi^*(Y)$ -6

Algorithm 9.2 Using Sum-Product-Variable-Elimination for computing conditional probabilities.

Procedure Cond-Prob-VE (\mathcal{K} , // A network over \mathcal{X} Y, // Set of query variables E = e // Evidence $\Phi \leftarrow$ Factors parameterizing \mathcal{K} 1 Replace each $\phi \in \Phi$ by $\phi[E = e]$ 23 Select an elimination ordering \prec $Z \leftarrow = \mathcal{X} - Y - E$ 45 $\phi^* \leftarrow$ Sum-Product-Variable-Elimination (Φ, \prec, Z) $\alpha \leftarrow \sum_{\boldsymbol{y} \in Val(\boldsymbol{Y})} \phi^*(\boldsymbol{y})$ 6 7 return α, ϕ^*

Conditioning Algorithm

- We construct a network $\mathcal{H}_{\Phi}[\mathbf{u}]$ for each assignment \mathbf{u} .
- Note that these networks have the same structure, but different parameters.
- Run sum-product VE for each of the networks.
- Sum the results to obtain $\hat{P}_{\Phi}(\mathbf{Y})$.

Algorithm 9.5 Conditioning algorithm Procedure Sum-Product-Conditioning Φ , // Set of factors, possibly reduced by evidence Y, // Set of query variables U // Set of variables on which to condition for each $u \in Val(U)$ 1 $\Phi_{\boldsymbol{u}} \leftarrow \{\phi[\boldsymbol{U} = \boldsymbol{u}] : \phi \in \Phi\}$ 23 Construct $\mathcal{H}_{\Phi_{n}}$ $(\alpha_{\boldsymbol{u}}, \phi_{\boldsymbol{u}}(\boldsymbol{Y})) \leftarrow \text{Cond-Prob-VE}(\mathcal{H}_{\Phi_{\boldsymbol{u}}}, \boldsymbol{Y}, \emptyset)$ 4 $\phi^*(Y) \leftarrow \frac{\sum_u \phi_u(Y)}{\sum_{u \in U} \alpha_u}$ 5Return $\phi^*(Y)$ -6

Normalization and an Example

- To get $P_{\Phi}(\mathbf{Y})$ we have to normalize.
- The partition function is the sum of partition functions

$$Z_{\Phi} = \sum_{\mathbf{u}} Z_{\Phi[\mathbf{u}]}$$

- We want to obtain P(J) with evidence $G = g^1$.
- Apply the conditioning algorithm to *S*.

Complexity of conditioning

- It seems more efficient than VE, i.e., smaller network.
- However, we need to compute multiple VE, one for each $\mathbf{u} \in Val(\mathbf{U})$.

- We know that $P(J) = \sum_{C,D,I,S,G,L,H} P(C,D,I,S,G,L,H,J).$
- Reorder $P(J) = \sum_{g} \left[\sum_{C,D,I,S,L,H} P(C,D,I,S,g,L,H,J) \right].$
- The inside of the parenthesis is the P(J) in the network H_{Φ_{G=g}}.

Conditioning vs Variable elimination

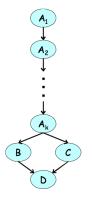
- Conditioning algorithm executes parts of the summation, enumerating all possible values of the conditioning variables.
- The VE algorithm does the same summation from the inside out using dynamic programming to reuse computation.
- **Theorem:** Let Φ be a set of factors, **Y** a query, and **U** a set of conditioning variables with $\mathbf{Z} = \mathcal{X} \mathbf{Y} \mathbf{U}$. Let \prec be an elimination ordering over **Z** used by the VE over the network \mathcal{H}_{Φ_u} in the conditioning algorithm. Let \prec^+ be an ordering consistent with \prec over the variables **Z**, and where for each $U \in \mathbf{U}$ we have $\mathbf{Z} \prec^+ U$. Then the number of operations performed by the conditioning is no less than the number of operations performed by VE with ordering \prec^+ .
- Conditioning never performs less operations than VE, as it uses sums and products but it does not reuse the computation for the conditioning variables.
- If \prec and \prec^+ are not consistent, we cannot say anything.

	Step	Variable	Factors	Variables	New
Coherence		eliminated	used	involved	factor
	1	C	$\phi_{C}^{+}(C, G), \phi_{D}^{+}(D, C, G)$	C, D, G	$\tau_1(D, G)$
Difficulty Intelligence	2	D	$\phi_G^+(G, I, D), \tau_1(D, G)$	G, I, D	$\tau_2(G, I)$
Grade	3	Ι	$\phi_I^+(I,G), \phi_S^+(S,I,G), \tau_2(G,I)$	G, S, I	$\tau_3(G, S)$
Brade SAT	4	H	$\phi_H^+(H, G, J)$	H, G, J	$\tau_4(G, J)$
Letter	5	S	$\tau_3(G, S), \phi_J^+(J, L, S, G)$	J, L, S, G	$\tau_5(J, L, G)$
Job	6	L	$\tau_{5}(J, L, G), \phi_{L}^{+}(L, G)$	J, L	$\tau_6(J)$
Нарру	7	—	$\tau_6(J), \tau_4(G,J)$	G, J	$\tau_7(G, J)$

• Elimination ordering is $\{C, D, I, H, S, L\}$ and conditioning on G

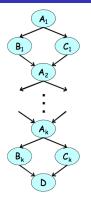
Step	Variable	Factors	Variables	New
	eliminated	used	involved	factor
1	C	$\phi_C(C), \phi_D(D,C)$	C, D	$\tau_1(D)$
2	D	$\phi_G(G, I, D), \tau_1(D)$	G, I, D	$\tau_2(G, I)$
3	Ι	$\phi_I(I), \phi_S^+(S, I), \tau_2(G, I)$	G, S, I	$\tau_3(G, S)$
4	H	$\phi_H^+(H,G,J)$	H, G, J	$\tau_4(G, J)$
5	S	$\tau_3(G, S), \phi_J^+(J, L, S)$	J, L, S, G	$\tau_5(J, L, G)$
6	L	$\tau_5(J,L,G), \phi_L(L,G)$	J, L	$\tau_6(J)$
7	G	$\tau_6(J), \tau_4(G, J)$	G, J	$\tau_7(J)$

- Run of P(J) with G eliminated last.
- We have defined ϕ^+ the augmented factor that contains G in the scope.



 If we conditioned on A_k in order to cut the loop, we will perform he entire elimination of the chain A₁ → · · · → A_{k-1} one time for each value of A_k.

More examples



- We want to cut every other A_i , e.g., A_2, A_4, \cdots .
- The cost of conditioning is exponential in k.
- The induced width (i.e., number of nodes in the largest clique -1) of the network is 2.
- The cost of VE is linear in k.

Raquel Urtasun and Tamir Hazan (TTI-C)

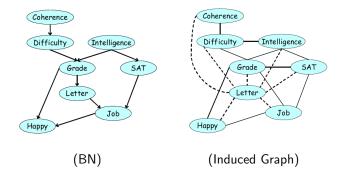
When is conditioning still useful?

- VE can have very large factors that are too memory consuming in large networks. Conditioning gives a continuous time-space tradeoff.
- ② Conditioning is the basis for useful approximate inference algorithms where for example we only enumerate a small set of possible u ∈ Val(U).

- Conditioning on U introduces U on every factor in the graph.
- We should connect U to every node in the graph.
- When eliminating U we remove it from the graph.
- We can defined an induced graph for the conditioning algorithm, which has two type of filled edges.

Def: Let Φ be a set of factors over $\mathcal{X} = \{X_1, \dots, X_n\}$ with $\mathbf{U} \subseteq \mathcal{X}$ conditional variables, and \prec an elimination ordering over the set $\mathbf{X} \subseteq \mathcal{X} - \mathbf{U}$. The induced graph $\mathcal{I}_{\Phi,\prec,\mathbf{U}}$ is an undirected graph over \mathcal{X} with edges.

- **(**) A conditioning edge between every $U \in \mathbf{U}$ and every other variable.
- ② A factor edge between every pair of variables X_i, X_j ∈ X that both appear in some intermediate factor ψ generated by the VE using ≺ as elimination ordering.



- Query: P(J), we conditioned on L, and eliminate $\{C, D, I, H, G, S\}$.
- Conditioning edges shown in dashed and factor edges as regular edges.

Theorem: Consider conditioning algorithm to a set of factors Φ , with conditioning variables $\mathbf{U} \subset \mathcal{X}$, and elimination ordering \prec . Then the running time of the algorithm is $\mathcal{O}(nv^m)$, where v is a bound on the domain size of any variable and m is the size of the largest clique in the induced graph.

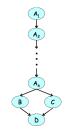
- Conditioning adds edges between the conditioning variables and all other variables in the graph.
- VE only does between those that are neighbors of the variable to eliminate.

Theorem: Consider conditioning algorithm to a set of factors Φ , with conditioning variables $\mathbf{U} \subset \mathcal{X}$, and elimination ordering \prec to eliminate $\mathbf{X} \subseteq \mathcal{X} - \mathbf{U}$. The space complexity of the algorithm is $\mathcal{O}(nv^{m_f})$, where v is a bound on the domain size of any variable and m is the size of the largest clique in the graph using only factor edges.

• For VE the space and time complexity are exponential in the size of the largest clique of the induced graph.

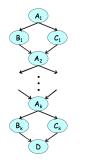
Improving conditioning: alternating VE and cond.

- In terms of operations, conditioning is always equal or worst than VE.
- The main problem is that computations are repeated for all values, and sometimes we do the computations multiple times, even if they are the same.



- We are interested in P(D).
- Better to eliminate first A₁, · · · , A_{k-1} before conditioning on A_k.
- Then only a network involving A_k, B, C, D .
- We can then condition on any of these variables, e.g., A_k , and eliminate the others B, C.
- We first did elimination, then condition, then elimination.

Improving conditioning: network decomposition



- Efficient when conditioning splits the graph into independent pieces.
- If we conditioned on A_2 this splits the network.
- If we conditioned on A₃, there is no need to take into account the top part of the network, i.e., {A₁, B₁, C₁}, as we will repeat the same computation
- Since we partitioned the network into individual pieces, we can now perform the computation on each of them separately, and then combine the results.
- The conditioning variables used in one part will not be used in the other.
- Build an algorithm that checks wether after conditioning the graph is disconnected or not.
- If it has, then splits computation into the disjoint sets recursively.

Summary of this week

- Variable elimination algorithm can be used to compute $P(\mathbf{Y})$, $P(\mathbf{Y}, \mathbf{e})$ and $P(\mathbf{Y}|\mathbf{e})$.
- Finding the optimal ordering for VE is NP-hard.
- For chordal graphs, we can construct an optimal ordering via de clique tree or the max-cardinality algorithm.
- If the graph is non-chordal, then we can use heuristics (i.e., width, weight) in a deterministic or stochastic fashion.
- Today we saw the **conditioning algorithm**.
- Improving conditioning via alternating VE and conditioning and via network decomposition.
- Next week we will see clique trees and message passing.